How is this set of matrices closed under multiplication? The Next CEO of Stack OverflowHow to determine if a set is a subspace of the vector space of all complex $2times 2$ matrices?Converting $mathbbC$ linear tranformation with determinant $a+bi$ into an $mathbbR$-linear transformation with determinant $a^2+b^2$.Is this inequality trivial?Showing that a very well-known representation is really a representationWrite out the multiplication table for the following set of matrices over $mathbb Q$Is multiplication an operation in the given set of matrices?Why are (a), (c), (d) true?Let $T:mathbb C^3tomathbb C^3$.Then, adjoint $T^*$ of $T$Prove that set $mathbbS$ forms group under matrix multiplicationAbout subalgebra of Hamilton

Why does standard notation not preserve intervals (visually)

Would a grinding machine be a simple and workable propulsion system for an interplanetary spacecraft?

When you upcast Blindness/Deafness, do all targets suffer the same effect?

Is a distribution that is normal, but highly skewed considered Gaussian?

Are police here, aren't itthey?

Running a General Election and the European Elections together

Unclear about dynamic binding

Why did CATV standarize in 75 ohms and everyone else in 50?

What connection does MS Office have to Netscape Navigator?

Easy to read palindrome checker

The past simple of "gaslight" – "gaslighted" or "gaslit"?

Proper way to express "He disappeared them"

Which one is the true statement?

Is the D&D universe the same as the Forgotten Realms universe?

Where do students learn to solve polynomial equations these days?

How to avoid supervisors with prejudiced views?

How to delete every two lines after 3rd lines in a file contains very large number of lines?

Can we say or write : "No, it'sn't"?

How to count occurrences of text in a file?

Would this house-rule that treats advantage as a +1 to the roll instead (and disadvantage as -1) and allows them to stack be balanced?

Flying from Cape Town to England and return to another province

Can this equation be simplified further?

How do I align (1) and (2)?

What was the first Unix version to run on a microcomputer?



How is this set of matrices closed under multiplication?



The Next CEO of Stack OverflowHow to determine if a set is a subspace of the vector space of all complex $2times 2$ matrices?Converting $mathbbC$ linear tranformation with determinant $a+bi$ into an $mathbbR$-linear transformation with determinant $a^2+b^2$.Is this inequality trivial?Showing that a very well-known representation is really a representationWrite out the multiplication table for the following set of matrices over $mathbb Q$Is multiplication an operation in the given set of matrices?Why are (a), (c), (d) true?Let $T:mathbb C^3tomathbb C^3$.Then, adjoint $T^*$ of $T$Prove that set $mathbbS$ forms group under matrix multiplicationAbout subalgebra of Hamilton










3












$begingroup$



Consider the set of matrices $$H = left left(beginarrayrl z_1&z_2\ -bar z_2&bar z_1 endarrayright) mid z_1, z_2 in mathbb C right.$$ It is a four-dimensional real subspace of the vector space $L_2(mathbb C)$, and enjoys the following remarkable properties:



$1)$ $H$ is closed under multiplicacion, i.e., it is a real subalgebra of the algebra $L_2(mathbb C)$;




I have tried to multiply it with this matrix:
beginbmatrix
a & b
\
c & d
endbmatrix



where $a$, $b$, $c$, and $d$ are complex numbers but I got a very big formula that I do not know how this formula still is in $H$. Is there any suggestions for proving this in a simplier way?










share|cite|improve this question











$endgroup$







  • 3




    $begingroup$
    You have to be careful: the matrix you multiply by also has to be of the same form. Thus, $c = -barb$ and $d = bara$. I might write up a fuller explanation of how this holds in a second (if it does, I gotta check) - I just wanted to point out that since it seemed like the first likely place where you might have tripped up.
    $endgroup$
    – Eevee Trainer
    3 hours ago







  • 2




    $begingroup$
    You multiply elements from H!
    $endgroup$
    – chhro
    3 hours ago






  • 4




    $begingroup$
    Find $$beginpmatrix z_1 & z_2\ -barz_2& barz_1 endpmatrix beginpmatrix w_1 & w_2\ -barw_2& barw_1 endpmatrix$$ and arrange the entries in the required form!
    $endgroup$
    – Chinnapparaj R
    3 hours ago










  • $begingroup$
    @EeveeTrainer ok I got your idea.
    $endgroup$
    – hopefully
    3 hours ago










  • $begingroup$
    Notice that the space is one representation of the Quaternions. See the section "Conjugation, the norm, and reciprocal".
    $endgroup$
    – Somos
    16 mins ago















3












$begingroup$



Consider the set of matrices $$H = left left(beginarrayrl z_1&z_2\ -bar z_2&bar z_1 endarrayright) mid z_1, z_2 in mathbb C right.$$ It is a four-dimensional real subspace of the vector space $L_2(mathbb C)$, and enjoys the following remarkable properties:



$1)$ $H$ is closed under multiplicacion, i.e., it is a real subalgebra of the algebra $L_2(mathbb C)$;




I have tried to multiply it with this matrix:
beginbmatrix
a & b
\
c & d
endbmatrix



where $a$, $b$, $c$, and $d$ are complex numbers but I got a very big formula that I do not know how this formula still is in $H$. Is there any suggestions for proving this in a simplier way?










share|cite|improve this question











$endgroup$







  • 3




    $begingroup$
    You have to be careful: the matrix you multiply by also has to be of the same form. Thus, $c = -barb$ and $d = bara$. I might write up a fuller explanation of how this holds in a second (if it does, I gotta check) - I just wanted to point out that since it seemed like the first likely place where you might have tripped up.
    $endgroup$
    – Eevee Trainer
    3 hours ago







  • 2




    $begingroup$
    You multiply elements from H!
    $endgroup$
    – chhro
    3 hours ago






  • 4




    $begingroup$
    Find $$beginpmatrix z_1 & z_2\ -barz_2& barz_1 endpmatrix beginpmatrix w_1 & w_2\ -barw_2& barw_1 endpmatrix$$ and arrange the entries in the required form!
    $endgroup$
    – Chinnapparaj R
    3 hours ago










  • $begingroup$
    @EeveeTrainer ok I got your idea.
    $endgroup$
    – hopefully
    3 hours ago










  • $begingroup$
    Notice that the space is one representation of the Quaternions. See the section "Conjugation, the norm, and reciprocal".
    $endgroup$
    – Somos
    16 mins ago













3












3








3





$begingroup$



Consider the set of matrices $$H = left left(beginarrayrl z_1&z_2\ -bar z_2&bar z_1 endarrayright) mid z_1, z_2 in mathbb C right.$$ It is a four-dimensional real subspace of the vector space $L_2(mathbb C)$, and enjoys the following remarkable properties:



$1)$ $H$ is closed under multiplicacion, i.e., it is a real subalgebra of the algebra $L_2(mathbb C)$;




I have tried to multiply it with this matrix:
beginbmatrix
a & b
\
c & d
endbmatrix



where $a$, $b$, $c$, and $d$ are complex numbers but I got a very big formula that I do not know how this formula still is in $H$. Is there any suggestions for proving this in a simplier way?










share|cite|improve this question











$endgroup$





Consider the set of matrices $$H = left left(beginarrayrl z_1&z_2\ -bar z_2&bar z_1 endarrayright) mid z_1, z_2 in mathbb C right.$$ It is a four-dimensional real subspace of the vector space $L_2(mathbb C)$, and enjoys the following remarkable properties:



$1)$ $H$ is closed under multiplicacion, i.e., it is a real subalgebra of the algebra $L_2(mathbb C)$;




I have tried to multiply it with this matrix:
beginbmatrix
a & b
\
c & d
endbmatrix



where $a$, $b$, $c$, and $d$ are complex numbers but I got a very big formula that I do not know how this formula still is in $H$. Is there any suggestions for proving this in a simplier way?







linear-algebra abstract-algebra group-theory complex-numbers






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 3 hours ago









Rócherz

3,0013821




3,0013821










asked 3 hours ago









hopefullyhopefully

299214




299214







  • 3




    $begingroup$
    You have to be careful: the matrix you multiply by also has to be of the same form. Thus, $c = -barb$ and $d = bara$. I might write up a fuller explanation of how this holds in a second (if it does, I gotta check) - I just wanted to point out that since it seemed like the first likely place where you might have tripped up.
    $endgroup$
    – Eevee Trainer
    3 hours ago







  • 2




    $begingroup$
    You multiply elements from H!
    $endgroup$
    – chhro
    3 hours ago






  • 4




    $begingroup$
    Find $$beginpmatrix z_1 & z_2\ -barz_2& barz_1 endpmatrix beginpmatrix w_1 & w_2\ -barw_2& barw_1 endpmatrix$$ and arrange the entries in the required form!
    $endgroup$
    – Chinnapparaj R
    3 hours ago










  • $begingroup$
    @EeveeTrainer ok I got your idea.
    $endgroup$
    – hopefully
    3 hours ago










  • $begingroup$
    Notice that the space is one representation of the Quaternions. See the section "Conjugation, the norm, and reciprocal".
    $endgroup$
    – Somos
    16 mins ago












  • 3




    $begingroup$
    You have to be careful: the matrix you multiply by also has to be of the same form. Thus, $c = -barb$ and $d = bara$. I might write up a fuller explanation of how this holds in a second (if it does, I gotta check) - I just wanted to point out that since it seemed like the first likely place where you might have tripped up.
    $endgroup$
    – Eevee Trainer
    3 hours ago







  • 2




    $begingroup$
    You multiply elements from H!
    $endgroup$
    – chhro
    3 hours ago






  • 4




    $begingroup$
    Find $$beginpmatrix z_1 & z_2\ -barz_2& barz_1 endpmatrix beginpmatrix w_1 & w_2\ -barw_2& barw_1 endpmatrix$$ and arrange the entries in the required form!
    $endgroup$
    – Chinnapparaj R
    3 hours ago










  • $begingroup$
    @EeveeTrainer ok I got your idea.
    $endgroup$
    – hopefully
    3 hours ago










  • $begingroup$
    Notice that the space is one representation of the Quaternions. See the section "Conjugation, the norm, and reciprocal".
    $endgroup$
    – Somos
    16 mins ago







3




3




$begingroup$
You have to be careful: the matrix you multiply by also has to be of the same form. Thus, $c = -barb$ and $d = bara$. I might write up a fuller explanation of how this holds in a second (if it does, I gotta check) - I just wanted to point out that since it seemed like the first likely place where you might have tripped up.
$endgroup$
– Eevee Trainer
3 hours ago





$begingroup$
You have to be careful: the matrix you multiply by also has to be of the same form. Thus, $c = -barb$ and $d = bara$. I might write up a fuller explanation of how this holds in a second (if it does, I gotta check) - I just wanted to point out that since it seemed like the first likely place where you might have tripped up.
$endgroup$
– Eevee Trainer
3 hours ago





2




2




$begingroup$
You multiply elements from H!
$endgroup$
– chhro
3 hours ago




$begingroup$
You multiply elements from H!
$endgroup$
– chhro
3 hours ago




4




4




$begingroup$
Find $$beginpmatrix z_1 & z_2\ -barz_2& barz_1 endpmatrix beginpmatrix w_1 & w_2\ -barw_2& barw_1 endpmatrix$$ and arrange the entries in the required form!
$endgroup$
– Chinnapparaj R
3 hours ago




$begingroup$
Find $$beginpmatrix z_1 & z_2\ -barz_2& barz_1 endpmatrix beginpmatrix w_1 & w_2\ -barw_2& barw_1 endpmatrix$$ and arrange the entries in the required form!
$endgroup$
– Chinnapparaj R
3 hours ago












$begingroup$
@EeveeTrainer ok I got your idea.
$endgroup$
– hopefully
3 hours ago




$begingroup$
@EeveeTrainer ok I got your idea.
$endgroup$
– hopefully
3 hours ago












$begingroup$
Notice that the space is one representation of the Quaternions. See the section "Conjugation, the norm, and reciprocal".
$endgroup$
– Somos
16 mins ago




$begingroup$
Notice that the space is one representation of the Quaternions. See the section "Conjugation, the norm, and reciprocal".
$endgroup$
– Somos
16 mins ago










2 Answers
2






active

oldest

votes


















5












$begingroup$

So, for a set $S$ of matrices (or any sort of element) to be closed under an operation $ast$ on it, we require that, for all $a,b in S, a ast b in S$.



As I noted in the comments, your issue lied in multiplying a matrix of $H$ by a generic matrix of complex elements, which is too general to have closure. You have to take two generic matrices of the set. So, let $a,b,c,d in Bbb C$ and then consider the multiplication



$$beginbmatrix
a & b\
-barb & bara
endbmatrix beginbmatrix
c & d\
-bard & barc
endbmatrix =beginbmatrix
ac - b bard & ad+bbarc\
-bara bard - barbc & bara barc-barbd
endbmatrix $$



You can see immediately the left two matrices are of the form of matrices in $H$; on the right is their product. You can verify that it, too, matches by noting a couple of properties of the complex conjugate:



$$overlinez_1 cdot z_2 = overlinez_1 cdot overlinez_2 ;;;;; textand ;;;;; overlinez_1 + z_2 = overlinez_1 + overlinez_2 ;;;;; textand ;;;;; overlineoverlinez_1 = z_1$$



where $z_1,z_2 in Bbb C$. So if...



  • ...the bottom-left entry is the negative of the conjugate of the top-right

  • ...the bottom-right entry is the conjugate of the top-left

...then the product is in the form for a matrix in $H$. It does happen to hold, and thus $H$ is closed under matrix multiplication.






share|cite|improve this answer











$endgroup$








  • 2




    $begingroup$
    I think the first term in the second element of the resulting matrix is ad not ab?
    $endgroup$
    – hopefully
    2 hours ago










  • $begingroup$
    @hopefully Yeah, you're right, I made a typo. Thanks!
    $endgroup$
    – Eevee Trainer
    2 hours ago










  • $begingroup$
    what about the terms that contain only one bar, like the second term of the bottom right entry?
    $endgroup$
    – hopefully
    1 hour ago










  • $begingroup$
    What about them, exactly?
    $endgroup$
    – Eevee Trainer
    1 hour ago






  • 1




    $begingroup$
    Take the conjugate of the top-left entry and you see they are equal if you use the properties in my post (the conjugate of a sum/product is the sum/product of the conjugates). One property I did leave out was that the conjugate of a conjugate is the original number, so I will add that. But the core idea is effectively that each factor of a number, when you take the conjugate, becomes its conjugate.
    $endgroup$
    – Eevee Trainer
    1 hour ago


















2












$begingroup$

Here's an alternative method that, after verification of the simple characterization of this subspace given below, is coordinate-free.



Hint Denote $$J := pmatrixcdot&-1\1&cdot.$$ It follows immediately from the definition that $$X in M(2, Bbb C) : textrm$X$ satisfies $X^dagger J = J X^top$ .$$




So, for $X, Y in H$, $$(X Y)^dagger J = Y^dagger X^dagger J = Y^dagger JX^top = J Y^top X^top = J (XY)^top .$$







share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3168941%2fhow-is-this-set-of-matrices-closed-under-multiplication%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    5












    $begingroup$

    So, for a set $S$ of matrices (or any sort of element) to be closed under an operation $ast$ on it, we require that, for all $a,b in S, a ast b in S$.



    As I noted in the comments, your issue lied in multiplying a matrix of $H$ by a generic matrix of complex elements, which is too general to have closure. You have to take two generic matrices of the set. So, let $a,b,c,d in Bbb C$ and then consider the multiplication



    $$beginbmatrix
    a & b\
    -barb & bara
    endbmatrix beginbmatrix
    c & d\
    -bard & barc
    endbmatrix =beginbmatrix
    ac - b bard & ad+bbarc\
    -bara bard - barbc & bara barc-barbd
    endbmatrix $$



    You can see immediately the left two matrices are of the form of matrices in $H$; on the right is their product. You can verify that it, too, matches by noting a couple of properties of the complex conjugate:



    $$overlinez_1 cdot z_2 = overlinez_1 cdot overlinez_2 ;;;;; textand ;;;;; overlinez_1 + z_2 = overlinez_1 + overlinez_2 ;;;;; textand ;;;;; overlineoverlinez_1 = z_1$$



    where $z_1,z_2 in Bbb C$. So if...



    • ...the bottom-left entry is the negative of the conjugate of the top-right

    • ...the bottom-right entry is the conjugate of the top-left

    ...then the product is in the form for a matrix in $H$. It does happen to hold, and thus $H$ is closed under matrix multiplication.






    share|cite|improve this answer











    $endgroup$








    • 2




      $begingroup$
      I think the first term in the second element of the resulting matrix is ad not ab?
      $endgroup$
      – hopefully
      2 hours ago










    • $begingroup$
      @hopefully Yeah, you're right, I made a typo. Thanks!
      $endgroup$
      – Eevee Trainer
      2 hours ago










    • $begingroup$
      what about the terms that contain only one bar, like the second term of the bottom right entry?
      $endgroup$
      – hopefully
      1 hour ago










    • $begingroup$
      What about them, exactly?
      $endgroup$
      – Eevee Trainer
      1 hour ago






    • 1




      $begingroup$
      Take the conjugate of the top-left entry and you see they are equal if you use the properties in my post (the conjugate of a sum/product is the sum/product of the conjugates). One property I did leave out was that the conjugate of a conjugate is the original number, so I will add that. But the core idea is effectively that each factor of a number, when you take the conjugate, becomes its conjugate.
      $endgroup$
      – Eevee Trainer
      1 hour ago















    5












    $begingroup$

    So, for a set $S$ of matrices (or any sort of element) to be closed under an operation $ast$ on it, we require that, for all $a,b in S, a ast b in S$.



    As I noted in the comments, your issue lied in multiplying a matrix of $H$ by a generic matrix of complex elements, which is too general to have closure. You have to take two generic matrices of the set. So, let $a,b,c,d in Bbb C$ and then consider the multiplication



    $$beginbmatrix
    a & b\
    -barb & bara
    endbmatrix beginbmatrix
    c & d\
    -bard & barc
    endbmatrix =beginbmatrix
    ac - b bard & ad+bbarc\
    -bara bard - barbc & bara barc-barbd
    endbmatrix $$



    You can see immediately the left two matrices are of the form of matrices in $H$; on the right is their product. You can verify that it, too, matches by noting a couple of properties of the complex conjugate:



    $$overlinez_1 cdot z_2 = overlinez_1 cdot overlinez_2 ;;;;; textand ;;;;; overlinez_1 + z_2 = overlinez_1 + overlinez_2 ;;;;; textand ;;;;; overlineoverlinez_1 = z_1$$



    where $z_1,z_2 in Bbb C$. So if...



    • ...the bottom-left entry is the negative of the conjugate of the top-right

    • ...the bottom-right entry is the conjugate of the top-left

    ...then the product is in the form for a matrix in $H$. It does happen to hold, and thus $H$ is closed under matrix multiplication.






    share|cite|improve this answer











    $endgroup$








    • 2




      $begingroup$
      I think the first term in the second element of the resulting matrix is ad not ab?
      $endgroup$
      – hopefully
      2 hours ago










    • $begingroup$
      @hopefully Yeah, you're right, I made a typo. Thanks!
      $endgroup$
      – Eevee Trainer
      2 hours ago










    • $begingroup$
      what about the terms that contain only one bar, like the second term of the bottom right entry?
      $endgroup$
      – hopefully
      1 hour ago










    • $begingroup$
      What about them, exactly?
      $endgroup$
      – Eevee Trainer
      1 hour ago






    • 1




      $begingroup$
      Take the conjugate of the top-left entry and you see they are equal if you use the properties in my post (the conjugate of a sum/product is the sum/product of the conjugates). One property I did leave out was that the conjugate of a conjugate is the original number, so I will add that. But the core idea is effectively that each factor of a number, when you take the conjugate, becomes its conjugate.
      $endgroup$
      – Eevee Trainer
      1 hour ago













    5












    5








    5





    $begingroup$

    So, for a set $S$ of matrices (or any sort of element) to be closed under an operation $ast$ on it, we require that, for all $a,b in S, a ast b in S$.



    As I noted in the comments, your issue lied in multiplying a matrix of $H$ by a generic matrix of complex elements, which is too general to have closure. You have to take two generic matrices of the set. So, let $a,b,c,d in Bbb C$ and then consider the multiplication



    $$beginbmatrix
    a & b\
    -barb & bara
    endbmatrix beginbmatrix
    c & d\
    -bard & barc
    endbmatrix =beginbmatrix
    ac - b bard & ad+bbarc\
    -bara bard - barbc & bara barc-barbd
    endbmatrix $$



    You can see immediately the left two matrices are of the form of matrices in $H$; on the right is their product. You can verify that it, too, matches by noting a couple of properties of the complex conjugate:



    $$overlinez_1 cdot z_2 = overlinez_1 cdot overlinez_2 ;;;;; textand ;;;;; overlinez_1 + z_2 = overlinez_1 + overlinez_2 ;;;;; textand ;;;;; overlineoverlinez_1 = z_1$$



    where $z_1,z_2 in Bbb C$. So if...



    • ...the bottom-left entry is the negative of the conjugate of the top-right

    • ...the bottom-right entry is the conjugate of the top-left

    ...then the product is in the form for a matrix in $H$. It does happen to hold, and thus $H$ is closed under matrix multiplication.






    share|cite|improve this answer











    $endgroup$



    So, for a set $S$ of matrices (or any sort of element) to be closed under an operation $ast$ on it, we require that, for all $a,b in S, a ast b in S$.



    As I noted in the comments, your issue lied in multiplying a matrix of $H$ by a generic matrix of complex elements, which is too general to have closure. You have to take two generic matrices of the set. So, let $a,b,c,d in Bbb C$ and then consider the multiplication



    $$beginbmatrix
    a & b\
    -barb & bara
    endbmatrix beginbmatrix
    c & d\
    -bard & barc
    endbmatrix =beginbmatrix
    ac - b bard & ad+bbarc\
    -bara bard - barbc & bara barc-barbd
    endbmatrix $$



    You can see immediately the left two matrices are of the form of matrices in $H$; on the right is their product. You can verify that it, too, matches by noting a couple of properties of the complex conjugate:



    $$overlinez_1 cdot z_2 = overlinez_1 cdot overlinez_2 ;;;;; textand ;;;;; overlinez_1 + z_2 = overlinez_1 + overlinez_2 ;;;;; textand ;;;;; overlineoverlinez_1 = z_1$$



    where $z_1,z_2 in Bbb C$. So if...



    • ...the bottom-left entry is the negative of the conjugate of the top-right

    • ...the bottom-right entry is the conjugate of the top-left

    ...then the product is in the form for a matrix in $H$. It does happen to hold, and thus $H$ is closed under matrix multiplication.







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited 1 hour ago

























    answered 3 hours ago









    Eevee TrainerEevee Trainer

    9,00731640




    9,00731640







    • 2




      $begingroup$
      I think the first term in the second element of the resulting matrix is ad not ab?
      $endgroup$
      – hopefully
      2 hours ago










    • $begingroup$
      @hopefully Yeah, you're right, I made a typo. Thanks!
      $endgroup$
      – Eevee Trainer
      2 hours ago










    • $begingroup$
      what about the terms that contain only one bar, like the second term of the bottom right entry?
      $endgroup$
      – hopefully
      1 hour ago










    • $begingroup$
      What about them, exactly?
      $endgroup$
      – Eevee Trainer
      1 hour ago






    • 1




      $begingroup$
      Take the conjugate of the top-left entry and you see they are equal if you use the properties in my post (the conjugate of a sum/product is the sum/product of the conjugates). One property I did leave out was that the conjugate of a conjugate is the original number, so I will add that. But the core idea is effectively that each factor of a number, when you take the conjugate, becomes its conjugate.
      $endgroup$
      – Eevee Trainer
      1 hour ago












    • 2




      $begingroup$
      I think the first term in the second element of the resulting matrix is ad not ab?
      $endgroup$
      – hopefully
      2 hours ago










    • $begingroup$
      @hopefully Yeah, you're right, I made a typo. Thanks!
      $endgroup$
      – Eevee Trainer
      2 hours ago










    • $begingroup$
      what about the terms that contain only one bar, like the second term of the bottom right entry?
      $endgroup$
      – hopefully
      1 hour ago










    • $begingroup$
      What about them, exactly?
      $endgroup$
      – Eevee Trainer
      1 hour ago






    • 1




      $begingroup$
      Take the conjugate of the top-left entry and you see they are equal if you use the properties in my post (the conjugate of a sum/product is the sum/product of the conjugates). One property I did leave out was that the conjugate of a conjugate is the original number, so I will add that. But the core idea is effectively that each factor of a number, when you take the conjugate, becomes its conjugate.
      $endgroup$
      – Eevee Trainer
      1 hour ago







    2




    2




    $begingroup$
    I think the first term in the second element of the resulting matrix is ad not ab?
    $endgroup$
    – hopefully
    2 hours ago




    $begingroup$
    I think the first term in the second element of the resulting matrix is ad not ab?
    $endgroup$
    – hopefully
    2 hours ago












    $begingroup$
    @hopefully Yeah, you're right, I made a typo. Thanks!
    $endgroup$
    – Eevee Trainer
    2 hours ago




    $begingroup$
    @hopefully Yeah, you're right, I made a typo. Thanks!
    $endgroup$
    – Eevee Trainer
    2 hours ago












    $begingroup$
    what about the terms that contain only one bar, like the second term of the bottom right entry?
    $endgroup$
    – hopefully
    1 hour ago




    $begingroup$
    what about the terms that contain only one bar, like the second term of the bottom right entry?
    $endgroup$
    – hopefully
    1 hour ago












    $begingroup$
    What about them, exactly?
    $endgroup$
    – Eevee Trainer
    1 hour ago




    $begingroup$
    What about them, exactly?
    $endgroup$
    – Eevee Trainer
    1 hour ago




    1




    1




    $begingroup$
    Take the conjugate of the top-left entry and you see they are equal if you use the properties in my post (the conjugate of a sum/product is the sum/product of the conjugates). One property I did leave out was that the conjugate of a conjugate is the original number, so I will add that. But the core idea is effectively that each factor of a number, when you take the conjugate, becomes its conjugate.
    $endgroup$
    – Eevee Trainer
    1 hour ago




    $begingroup$
    Take the conjugate of the top-left entry and you see they are equal if you use the properties in my post (the conjugate of a sum/product is the sum/product of the conjugates). One property I did leave out was that the conjugate of a conjugate is the original number, so I will add that. But the core idea is effectively that each factor of a number, when you take the conjugate, becomes its conjugate.
    $endgroup$
    – Eevee Trainer
    1 hour ago











    2












    $begingroup$

    Here's an alternative method that, after verification of the simple characterization of this subspace given below, is coordinate-free.



    Hint Denote $$J := pmatrixcdot&-1\1&cdot.$$ It follows immediately from the definition that $$X in M(2, Bbb C) : textrm$X$ satisfies $X^dagger J = J X^top$ .$$




    So, for $X, Y in H$, $$(X Y)^dagger J = Y^dagger X^dagger J = Y^dagger JX^top = J Y^top X^top = J (XY)^top .$$







    share|cite|improve this answer









    $endgroup$

















      2












      $begingroup$

      Here's an alternative method that, after verification of the simple characterization of this subspace given below, is coordinate-free.



      Hint Denote $$J := pmatrixcdot&-1\1&cdot.$$ It follows immediately from the definition that $$X in M(2, Bbb C) : textrm$X$ satisfies $X^dagger J = J X^top$ .$$




      So, for $X, Y in H$, $$(X Y)^dagger J = Y^dagger X^dagger J = Y^dagger JX^top = J Y^top X^top = J (XY)^top .$$







      share|cite|improve this answer









      $endgroup$















        2












        2








        2





        $begingroup$

        Here's an alternative method that, after verification of the simple characterization of this subspace given below, is coordinate-free.



        Hint Denote $$J := pmatrixcdot&-1\1&cdot.$$ It follows immediately from the definition that $$X in M(2, Bbb C) : textrm$X$ satisfies $X^dagger J = J X^top$ .$$




        So, for $X, Y in H$, $$(X Y)^dagger J = Y^dagger X^dagger J = Y^dagger JX^top = J Y^top X^top = J (XY)^top .$$







        share|cite|improve this answer









        $endgroup$



        Here's an alternative method that, after verification of the simple characterization of this subspace given below, is coordinate-free.



        Hint Denote $$J := pmatrixcdot&-1\1&cdot.$$ It follows immediately from the definition that $$X in M(2, Bbb C) : textrm$X$ satisfies $X^dagger J = J X^top$ .$$




        So, for $X, Y in H$, $$(X Y)^dagger J = Y^dagger X^dagger J = Y^dagger JX^top = J Y^top X^top = J (XY)^top .$$








        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 1 hour ago









        TravisTravis

        63.8k769151




        63.8k769151



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3168941%2fhow-is-this-set-of-matrices-closed-under-multiplication%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            名間水力發電廠 目录 沿革 設施 鄰近設施 註釋 外部連結 导航菜单23°50′10″N 120°42′41″E / 23.83611°N 120.71139°E / 23.83611; 120.7113923°50′10″N 120°42′41″E / 23.83611°N 120.71139°E / 23.83611; 120.71139計畫概要原始内容臺灣第一座BOT 模式開發的水力發電廠-名間水力電廠名間水力發電廠 水利署首件BOT案原始内容《小檔案》名間電廠 首座BOT水力發電廠原始内容名間電廠BOT - 經濟部水利署中區水資源局

            Prove that NP is closed under karp reduction?Space(n) not closed under Karp reductions - what about NTime(n)?Class P is closed under rotation?Prove or disprove that $NL$ is closed under polynomial many-one reductions$mathbfNC_2$ is closed under log-space reductionOn Karp reductionwhen can I know if a class (complexity) is closed under reduction (cook/karp)Check if class $PSPACE$ is closed under polyonomially space reductionIs NPSPACE also closed under polynomial-time reduction and under log-space reduction?Prove PSPACE is closed under complement?Prove PSPACE is closed under union?

            Is my guitar’s action too high? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Strings too stiff on a recently purchased acoustic guitar | Cort AD880CEIs the action of my guitar really high?Μy little finger is too weak to play guitarWith guitar, how long should I give my fingers to strengthen / callous?When playing a fret the guitar sounds mutedPlaying (Barre) chords up the guitar neckI think my guitar strings are wound too tight and I can't play barre chordsF barre chord on an SG guitarHow to find to the right strings of a barre chord by feel?High action on higher fret on my steel acoustic guitar