Is the sample correlation always positively correlated with the sample variance? The Next CEO of Stack OverflowGiven known bivariate normal means and variances, update correlation estimate, $P(rho)$, with new data?Where does the correlation come from in the regression coefficient equation for simple regressionCDF of the ratio of two correlated $chi^2$ random variablesIs there a version of the correlation coefficient that is less-sensitive to outliers?Correlation in Distances of Points Within a Circle from Centre and One Other PointHow do I reproduce this distribution (with observed means, sd, kurtosis, skewness and correlation)?Is the formula of covariance right?Is my Correlation reasoning correct?Variance of $Y|x$ from regression lineIn a bivariate normal sample, why is the squared sample correlation Beta distributed?

How to find if SQL server backup is encrypted with TDE without restoring the backup

The sum of any ten consecutive numbers from a fibonacci sequence is divisible by 11

Mathematica command that allows it to read my intentions

What is the difference between 'contrib' and 'non-free' packages repositories?

Man transported from Alternate World into ours by a Neutrino Detector

Compensation for working overtime on Saturdays

How dangerous is XSS

How to pronounce fünf in 45

My ex-girlfriend uses my Apple ID to login to her iPad, do I have to give her my Apple ID password to reset it?

Why does freezing point matter when picking cooler ice packs?

Is the sample correlation always positively correlated with the sample variance?

Traveling with my 5 year old daughter (as the father) without the mother from Germany to Mexico

Salesforce opportunity stages

Are British MPs missing the point, with these 'Indicative Votes'?

Simplify trigonometric expression using trigonometric identities

Read/write a pipe-delimited file line by line with some simple text manipulation

Compilation of a 2d array and a 1d array

Is it reasonable to ask other researchers to send me their previous grant applications?

How can I separate the number from the unit in argument?

Direct Implications Between USA and UK in Event of No-Deal Brexit

Early programmable calculators with RS-232

Raspberry pi 3 B with Ubuntu 18.04 server arm64: what pi version

Prodigo = pro + ago?

Incomplete cube



Is the sample correlation always positively correlated with the sample variance?



The Next CEO of Stack OverflowGiven known bivariate normal means and variances, update correlation estimate, $P(rho)$, with new data?Where does the correlation come from in the regression coefficient equation for simple regressionCDF of the ratio of two correlated $chi^2$ random variablesIs there a version of the correlation coefficient that is less-sensitive to outliers?Correlation in Distances of Points Within a Circle from Centre and One Other PointHow do I reproduce this distribution (with observed means, sd, kurtosis, skewness and correlation)?Is the formula of covariance right?Is my Correlation reasoning correct?Variance of $Y|x$ from regression lineIn a bivariate normal sample, why is the squared sample correlation Beta distributed?










3












$begingroup$


The sample correlation $r$ and the sample standard deviation of $X$ (call it $s_X$) seem to be positively correlated if I simulate bivariate normal $X$, $Y$ with a positive true correlation (and seem to be negatively correlated if the true correlation between $X$ and $Y$ is negative). I found this somewhat counterintuitive. Very heuristically, I suppose it reflects the fact that $r$ represents the expected increase in Y (in units of SD(Y)) for a one-SD increase in X, and if we estimate a larger $s_X$, then $r$ reflects the change in Y associated with a larger change in X.



However, I would like to know if $Cov(r, s_x) >0$ for $r>0$ holds in general (at least for the case in which X and Y are bivariate normal and with large n). Letting $sigma$ denote a true SD, we have:



$$Cov(r, s_X) = E [ r s_X] - rho sigma_x$$



$$ approx E Bigg[ fracwidehatCov(X,Y)s_Y Bigg] - fracCov(X,Y)sigma_Y $$



I tried using a Taylor expansion on the first term, but it depends on $Cov(widehatCov(X,Y), s_Y)$, so that’s a dead end. Any ideas?



EDIT



Maybe a better direction would be to try to show that $Cov(widehatbeta, s_X)=0$, where $widehatbeta$ is the OLS coefficient of Y on X. Then we could argue that since $widehatbeta = r fracs_Ys_X$, this implies the desired result. Since $widehatbeta$ is almost like a difference of sample means, maybe we could get the former result using something like the known independence of the sample mean and variance for a normal RV?










share|cite|improve this question











$endgroup$











  • $begingroup$
    It would be unchanged. Hmm. I'm afraid I don't yet see the relevance, though.
    $endgroup$
    – half-pass
    4 hours ago










  • $begingroup$
    I should probably also note that while I wish this were a homework question, it's not... :)
    $endgroup$
    – half-pass
    4 hours ago






  • 1




    $begingroup$
    Ah, I didn't read the question carefully enough. My apologies.
    $endgroup$
    – jbowman
    4 hours ago










  • $begingroup$
    The first equality in your calculation is not correct. $s_x = sqrts^2_x$ is consistent for the standard deviation, but is not unbiased: en.wikipedia.org/wiki/Unbiased_estimation_of_standard_deviation
    $endgroup$
    – Andrew M
    4 hours ago











  • $begingroup$
    It's extremely close to unbiased for large n, though -- the rule-of-thumb correction factor for a normal RV is (n - 1.5) vs. (n-1).
    $endgroup$
    – half-pass
    4 hours ago















3












$begingroup$


The sample correlation $r$ and the sample standard deviation of $X$ (call it $s_X$) seem to be positively correlated if I simulate bivariate normal $X$, $Y$ with a positive true correlation (and seem to be negatively correlated if the true correlation between $X$ and $Y$ is negative). I found this somewhat counterintuitive. Very heuristically, I suppose it reflects the fact that $r$ represents the expected increase in Y (in units of SD(Y)) for a one-SD increase in X, and if we estimate a larger $s_X$, then $r$ reflects the change in Y associated with a larger change in X.



However, I would like to know if $Cov(r, s_x) >0$ for $r>0$ holds in general (at least for the case in which X and Y are bivariate normal and with large n). Letting $sigma$ denote a true SD, we have:



$$Cov(r, s_X) = E [ r s_X] - rho sigma_x$$



$$ approx E Bigg[ fracwidehatCov(X,Y)s_Y Bigg] - fracCov(X,Y)sigma_Y $$



I tried using a Taylor expansion on the first term, but it depends on $Cov(widehatCov(X,Y), s_Y)$, so that’s a dead end. Any ideas?



EDIT



Maybe a better direction would be to try to show that $Cov(widehatbeta, s_X)=0$, where $widehatbeta$ is the OLS coefficient of Y on X. Then we could argue that since $widehatbeta = r fracs_Ys_X$, this implies the desired result. Since $widehatbeta$ is almost like a difference of sample means, maybe we could get the former result using something like the known independence of the sample mean and variance for a normal RV?










share|cite|improve this question











$endgroup$











  • $begingroup$
    It would be unchanged. Hmm. I'm afraid I don't yet see the relevance, though.
    $endgroup$
    – half-pass
    4 hours ago










  • $begingroup$
    I should probably also note that while I wish this were a homework question, it's not... :)
    $endgroup$
    – half-pass
    4 hours ago






  • 1




    $begingroup$
    Ah, I didn't read the question carefully enough. My apologies.
    $endgroup$
    – jbowman
    4 hours ago










  • $begingroup$
    The first equality in your calculation is not correct. $s_x = sqrts^2_x$ is consistent for the standard deviation, but is not unbiased: en.wikipedia.org/wiki/Unbiased_estimation_of_standard_deviation
    $endgroup$
    – Andrew M
    4 hours ago











  • $begingroup$
    It's extremely close to unbiased for large n, though -- the rule-of-thumb correction factor for a normal RV is (n - 1.5) vs. (n-1).
    $endgroup$
    – half-pass
    4 hours ago













3












3








3





$begingroup$


The sample correlation $r$ and the sample standard deviation of $X$ (call it $s_X$) seem to be positively correlated if I simulate bivariate normal $X$, $Y$ with a positive true correlation (and seem to be negatively correlated if the true correlation between $X$ and $Y$ is negative). I found this somewhat counterintuitive. Very heuristically, I suppose it reflects the fact that $r$ represents the expected increase in Y (in units of SD(Y)) for a one-SD increase in X, and if we estimate a larger $s_X$, then $r$ reflects the change in Y associated with a larger change in X.



However, I would like to know if $Cov(r, s_x) >0$ for $r>0$ holds in general (at least for the case in which X and Y are bivariate normal and with large n). Letting $sigma$ denote a true SD, we have:



$$Cov(r, s_X) = E [ r s_X] - rho sigma_x$$



$$ approx E Bigg[ fracwidehatCov(X,Y)s_Y Bigg] - fracCov(X,Y)sigma_Y $$



I tried using a Taylor expansion on the first term, but it depends on $Cov(widehatCov(X,Y), s_Y)$, so that’s a dead end. Any ideas?



EDIT



Maybe a better direction would be to try to show that $Cov(widehatbeta, s_X)=0$, where $widehatbeta$ is the OLS coefficient of Y on X. Then we could argue that since $widehatbeta = r fracs_Ys_X$, this implies the desired result. Since $widehatbeta$ is almost like a difference of sample means, maybe we could get the former result using something like the known independence of the sample mean and variance for a normal RV?










share|cite|improve this question











$endgroup$




The sample correlation $r$ and the sample standard deviation of $X$ (call it $s_X$) seem to be positively correlated if I simulate bivariate normal $X$, $Y$ with a positive true correlation (and seem to be negatively correlated if the true correlation between $X$ and $Y$ is negative). I found this somewhat counterintuitive. Very heuristically, I suppose it reflects the fact that $r$ represents the expected increase in Y (in units of SD(Y)) for a one-SD increase in X, and if we estimate a larger $s_X$, then $r$ reflects the change in Y associated with a larger change in X.



However, I would like to know if $Cov(r, s_x) >0$ for $r>0$ holds in general (at least for the case in which X and Y are bivariate normal and with large n). Letting $sigma$ denote a true SD, we have:



$$Cov(r, s_X) = E [ r s_X] - rho sigma_x$$



$$ approx E Bigg[ fracwidehatCov(X,Y)s_Y Bigg] - fracCov(X,Y)sigma_Y $$



I tried using a Taylor expansion on the first term, but it depends on $Cov(widehatCov(X,Y), s_Y)$, so that’s a dead end. Any ideas?



EDIT



Maybe a better direction would be to try to show that $Cov(widehatbeta, s_X)=0$, where $widehatbeta$ is the OLS coefficient of Y on X. Then we could argue that since $widehatbeta = r fracs_Ys_X$, this implies the desired result. Since $widehatbeta$ is almost like a difference of sample means, maybe we could get the former result using something like the known independence of the sample mean and variance for a normal RV?







correlation covariance independence






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 3 hours ago







half-pass

















asked 5 hours ago









half-passhalf-pass

1,43441931




1,43441931











  • $begingroup$
    It would be unchanged. Hmm. I'm afraid I don't yet see the relevance, though.
    $endgroup$
    – half-pass
    4 hours ago










  • $begingroup$
    I should probably also note that while I wish this were a homework question, it's not... :)
    $endgroup$
    – half-pass
    4 hours ago






  • 1




    $begingroup$
    Ah, I didn't read the question carefully enough. My apologies.
    $endgroup$
    – jbowman
    4 hours ago










  • $begingroup$
    The first equality in your calculation is not correct. $s_x = sqrts^2_x$ is consistent for the standard deviation, but is not unbiased: en.wikipedia.org/wiki/Unbiased_estimation_of_standard_deviation
    $endgroup$
    – Andrew M
    4 hours ago











  • $begingroup$
    It's extremely close to unbiased for large n, though -- the rule-of-thumb correction factor for a normal RV is (n - 1.5) vs. (n-1).
    $endgroup$
    – half-pass
    4 hours ago
















  • $begingroup$
    It would be unchanged. Hmm. I'm afraid I don't yet see the relevance, though.
    $endgroup$
    – half-pass
    4 hours ago










  • $begingroup$
    I should probably also note that while I wish this were a homework question, it's not... :)
    $endgroup$
    – half-pass
    4 hours ago






  • 1




    $begingroup$
    Ah, I didn't read the question carefully enough. My apologies.
    $endgroup$
    – jbowman
    4 hours ago










  • $begingroup$
    The first equality in your calculation is not correct. $s_x = sqrts^2_x$ is consistent for the standard deviation, but is not unbiased: en.wikipedia.org/wiki/Unbiased_estimation_of_standard_deviation
    $endgroup$
    – Andrew M
    4 hours ago











  • $begingroup$
    It's extremely close to unbiased for large n, though -- the rule-of-thumb correction factor for a normal RV is (n - 1.5) vs. (n-1).
    $endgroup$
    – half-pass
    4 hours ago















$begingroup$
It would be unchanged. Hmm. I'm afraid I don't yet see the relevance, though.
$endgroup$
– half-pass
4 hours ago




$begingroup$
It would be unchanged. Hmm. I'm afraid I don't yet see the relevance, though.
$endgroup$
– half-pass
4 hours ago












$begingroup$
I should probably also note that while I wish this were a homework question, it's not... :)
$endgroup$
– half-pass
4 hours ago




$begingroup$
I should probably also note that while I wish this were a homework question, it's not... :)
$endgroup$
– half-pass
4 hours ago




1




1




$begingroup$
Ah, I didn't read the question carefully enough. My apologies.
$endgroup$
– jbowman
4 hours ago




$begingroup$
Ah, I didn't read the question carefully enough. My apologies.
$endgroup$
– jbowman
4 hours ago












$begingroup$
The first equality in your calculation is not correct. $s_x = sqrts^2_x$ is consistent for the standard deviation, but is not unbiased: en.wikipedia.org/wiki/Unbiased_estimation_of_standard_deviation
$endgroup$
– Andrew M
4 hours ago





$begingroup$
The first equality in your calculation is not correct. $s_x = sqrts^2_x$ is consistent for the standard deviation, but is not unbiased: en.wikipedia.org/wiki/Unbiased_estimation_of_standard_deviation
$endgroup$
– Andrew M
4 hours ago













$begingroup$
It's extremely close to unbiased for large n, though -- the rule-of-thumb correction factor for a normal RV is (n - 1.5) vs. (n-1).
$endgroup$
– half-pass
4 hours ago




$begingroup$
It's extremely close to unbiased for large n, though -- the rule-of-thumb correction factor for a normal RV is (n - 1.5) vs. (n-1).
$endgroup$
– half-pass
4 hours ago










2 Answers
2






active

oldest

votes


















1












$begingroup$

It will depend on the joint distribution. For the example you mention, the bivariate (zero-mean) Normal distribution is characterized by the $rho, sigma_x, sigma_y$. It follows that one can have all possible combinations of values of these three parameters, implying that no relation between $rho$ and the standard deviations can be established.



For other bivariate distributions, the correlation coefficient may be fundamentally a function of the standard deviations (essentially both will be functions of more primitive parameters), in which case one can examine whether a monotonic relation exists.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    I understand that the three parameters can have arbitrary relationships for the BVN distribution, but I don't think it follows that the sample estimates of these are asymptotically independent.
    $endgroup$
    – half-pass
    3 hours ago


















1












$begingroup$

Yes, it does hold asymptotically regardless of the distribution of X and Y. I was on the right track with the Taylor expansion; I just needed to make a symmetry argument:



enter image description here






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "65"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f400643%2fis-the-sample-correlation-always-positively-correlated-with-the-sample-variance%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    It will depend on the joint distribution. For the example you mention, the bivariate (zero-mean) Normal distribution is characterized by the $rho, sigma_x, sigma_y$. It follows that one can have all possible combinations of values of these three parameters, implying that no relation between $rho$ and the standard deviations can be established.



    For other bivariate distributions, the correlation coefficient may be fundamentally a function of the standard deviations (essentially both will be functions of more primitive parameters), in which case one can examine whether a monotonic relation exists.






    share|cite|improve this answer









    $endgroup$












    • $begingroup$
      I understand that the three parameters can have arbitrary relationships for the BVN distribution, but I don't think it follows that the sample estimates of these are asymptotically independent.
      $endgroup$
      – half-pass
      3 hours ago















    1












    $begingroup$

    It will depend on the joint distribution. For the example you mention, the bivariate (zero-mean) Normal distribution is characterized by the $rho, sigma_x, sigma_y$. It follows that one can have all possible combinations of values of these three parameters, implying that no relation between $rho$ and the standard deviations can be established.



    For other bivariate distributions, the correlation coefficient may be fundamentally a function of the standard deviations (essentially both will be functions of more primitive parameters), in which case one can examine whether a monotonic relation exists.






    share|cite|improve this answer









    $endgroup$












    • $begingroup$
      I understand that the three parameters can have arbitrary relationships for the BVN distribution, but I don't think it follows that the sample estimates of these are asymptotically independent.
      $endgroup$
      – half-pass
      3 hours ago













    1












    1








    1





    $begingroup$

    It will depend on the joint distribution. For the example you mention, the bivariate (zero-mean) Normal distribution is characterized by the $rho, sigma_x, sigma_y$. It follows that one can have all possible combinations of values of these three parameters, implying that no relation between $rho$ and the standard deviations can be established.



    For other bivariate distributions, the correlation coefficient may be fundamentally a function of the standard deviations (essentially both will be functions of more primitive parameters), in which case one can examine whether a monotonic relation exists.






    share|cite|improve this answer









    $endgroup$



    It will depend on the joint distribution. For the example you mention, the bivariate (zero-mean) Normal distribution is characterized by the $rho, sigma_x, sigma_y$. It follows that one can have all possible combinations of values of these three parameters, implying that no relation between $rho$ and the standard deviations can be established.



    For other bivariate distributions, the correlation coefficient may be fundamentally a function of the standard deviations (essentially both will be functions of more primitive parameters), in which case one can examine whether a monotonic relation exists.







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered 3 hours ago









    Alecos PapadopoulosAlecos Papadopoulos

    42.8k297197




    42.8k297197











    • $begingroup$
      I understand that the three parameters can have arbitrary relationships for the BVN distribution, but I don't think it follows that the sample estimates of these are asymptotically independent.
      $endgroup$
      – half-pass
      3 hours ago
















    • $begingroup$
      I understand that the three parameters can have arbitrary relationships for the BVN distribution, but I don't think it follows that the sample estimates of these are asymptotically independent.
      $endgroup$
      – half-pass
      3 hours ago















    $begingroup$
    I understand that the three parameters can have arbitrary relationships for the BVN distribution, but I don't think it follows that the sample estimates of these are asymptotically independent.
    $endgroup$
    – half-pass
    3 hours ago




    $begingroup$
    I understand that the three parameters can have arbitrary relationships for the BVN distribution, but I don't think it follows that the sample estimates of these are asymptotically independent.
    $endgroup$
    – half-pass
    3 hours ago













    1












    $begingroup$

    Yes, it does hold asymptotically regardless of the distribution of X and Y. I was on the right track with the Taylor expansion; I just needed to make a symmetry argument:



    enter image description here






    share|cite|improve this answer









    $endgroup$

















      1












      $begingroup$

      Yes, it does hold asymptotically regardless of the distribution of X and Y. I was on the right track with the Taylor expansion; I just needed to make a symmetry argument:



      enter image description here






      share|cite|improve this answer









      $endgroup$















        1












        1








        1





        $begingroup$

        Yes, it does hold asymptotically regardless of the distribution of X and Y. I was on the right track with the Taylor expansion; I just needed to make a symmetry argument:



        enter image description here






        share|cite|improve this answer









        $endgroup$



        Yes, it does hold asymptotically regardless of the distribution of X and Y. I was on the right track with the Taylor expansion; I just needed to make a symmetry argument:



        enter image description here







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 2 hours ago









        half-passhalf-pass

        1,43441931




        1,43441931



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Cross Validated!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f400643%2fis-the-sample-correlation-always-positively-correlated-with-the-sample-variance%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            名間水力發電廠 目录 沿革 設施 鄰近設施 註釋 外部連結 导航菜单23°50′10″N 120°42′41″E / 23.83611°N 120.71139°E / 23.83611; 120.7113923°50′10″N 120°42′41″E / 23.83611°N 120.71139°E / 23.83611; 120.71139計畫概要原始内容臺灣第一座BOT 模式開發的水力發電廠-名間水力電廠名間水力發電廠 水利署首件BOT案原始内容《小檔案》名間電廠 首座BOT水力發電廠原始内容名間電廠BOT - 經濟部水利署中區水資源局

            Is my guitar’s action too high? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Strings too stiff on a recently purchased acoustic guitar | Cort AD880CEIs the action of my guitar really high?Μy little finger is too weak to play guitarWith guitar, how long should I give my fingers to strengthen / callous?When playing a fret the guitar sounds mutedPlaying (Barre) chords up the guitar neckI think my guitar strings are wound too tight and I can't play barre chordsF barre chord on an SG guitarHow to find to the right strings of a barre chord by feel?High action on higher fret on my steel acoustic guitar

            香港授勳及嘉獎制度 目录 勳章及獎狀類別 嘉獎等級 授勳及嘉獎提名 統計數字 多次獲頒勳章或獎狀的人士 爭議 褫奪機制 参考文献 外部連結 参见 导航菜单統計數字一九九七年七月二日(星期三)香港特別行政區的授勳制度六七暴動領袖獲大紫荊勳章 董建華被斥為肯定殺人放火董建華授勳楊光 議員窮追猛打蘋論:顛倒是非黑白的大紫荊董讚楊光有貢獻避談暴動董拒答授勳楊光原因撤除勳銜撤除勳銜撤除勳銜特首掌「搣柴」生殺權行為失當罪 隨時「搣柴」失長糧政府刊憲 許仕仁郭炳江遭「搣柴」去年中終極上訴失敗 許仕仁郭炳江撤勳章太平紳士猛料阿Sir講古—— 「搣柴」有故一九九八年授勳名單一九九九年授勳名單二○○三年授勳名單二○○八年授勳名單二○○七年授勳名單政府總部禮賓處 - 授勳及嘉獎香港特別行政區勳章綬帶一覽(PDF)(非官方)