Quantum Random Number GeneratorRandom Number Generator ClassRandom Topic GeneratorDiscrete random variable generatorRandom String generator in COptimize random number generatorRandom number generator initialisationTesting a Random number generatorPseudo Random Number GeneratorRandom Number Generator Followup: Choosing the Generator Algorithm and the DistributionPseudo-truly random number generator
Forgetting the musical notes while performing in concert
Rotate ASCII Art by 45 Degrees
Does the Idaho Potato Commission associate potato skins with healthy eating?
Why were 5.25" floppy drives cheaper than 8"?
In Bayesian inference, why are some terms dropped from the posterior predictive?
Different meanings of こわい
Finding the reason behind the value of the integral.
Does Dispel Magic work on Tiny Hut?
How can a day be of 24 hours?
Can a virus destroy the BIOS of a modern computer?
Getting extremely large arrows with tikzcd
Is it possible to map the firing of neurons in the human brain so as to stimulate artificial memories in someone else?
What is the opposite of "eschatology"?
Finitely generated matrix groups whose eigenvalues are all algebraic
What does the same-ish mean?
How to prevent "they're falling in love" trope
Send out email when Apex Queueable fails and test it
Is there a hemisphere-neutral way of specifying a season?
Convert seconds to minutes
Pact of Blade Warlock with Dancing Blade
How can saying a song's name be a copyright violation?
What Exploit Are These User Agents Trying to Use?
Could neural networks be considered metaheuristics?
Avoiding the "not like other girls" trope?
Quantum Random Number Generator
Random Number Generator ClassRandom Topic GeneratorDiscrete random variable generatorRandom String generator in COptimize random number generatorRandom number generator initialisationTesting a Random number generatorPseudo Random Number GeneratorRandom Number Generator Followup: Choosing the Generator Algorithm and the DistributionPseudo-truly random number generator
$begingroup$
I'm working on a Quantum Random Number Generator and wanted to get some feedback on the project so far.
I'm using PyQuil to generate machine code for the quantum computer, first to create a bell state placing our random bit into a superposition, then I measure the bit to collapse the superposition and repeat the process for N bits.
I'm a little concerned because I haven't been able to come across much data in terms of how long it takes to restore a qubit to a superposition so I can't really say how fast this program is going to work, but on my virtual quantum computer it runs okayish,~0.5 seconds to generate 512 bits, ~1 second for 1024 bits, ~2.09 seconds for 2048 bits.
The QRandom class is a subclass of the Random() class, figured it was easier to re-use than reinvent the wheel completely.
qrandom.py:
"""
Random variable generator using quantum machines
"""
from math import sqrt as _sqrt
import random
import psutil
from pyquil.quil import Program
from pyquil.api import get_qc
from pyquil.gates import H, CNOT
import vm
__all__ = ["QRandom", "random", "randint", "randrange", "getstate", "setstate", "getrandbits"]
BPF = 53 # Number of bits in a float
RECIP_BPF = 2**-BPF
def bell_state():
"""Returns the Program object of a bell state operation on a quantum computer
"""
return Program(H(0), CNOT(0, 1))
def arr_to_int(arr):
"""returns an integer from an array of binary numbers
arr = [1 0 1 0 1 0 1] || [1,0,1,0,1,0,1]
"""
return int(''.join([str(i) for i in arr]), 2)
def arr_to_bits(arr):
return ''.join([str(i) for i in arr])
def int_to_bytes(k, x=64):
"""returns a bytes object of the integer k with x bytes"""
#return bytes(k,x)
return bytes(''.join(str(1 & int(k) >> i) for i in range(x)[::-1]), 'utf-8')
def bits_to_bytes(k):
"""returns a bytes object of the bitstring k"""
return int(k, 2).to_bytes((len(k) + 7) // 8, 'big')
def qvm():
"""Returns the quantum computer or virtual machine"""
return get_qc('9q-square-qvm')
def test_quantum_connection():
"""
Tests the connection to the quantum virtual machine.
attempts to start the virtual machine if possible
"""
while True:
qvm_running = False
quilc_running = False
for proc in psutil.process_iter():
if 'qvm' in proc.name().lower():
qvm_running = True
elif 'quilc' in proc.name().lower():
quilc_running = True
if qvm_running is False or quilc_running is False:
try:
vm.start_servers()
except Exception as e:
raise Exception(e)
else:
break
class QRandom(random.Random):
"""Quantum random number generator
Generates a random number by collapsing bell states on a
quantum computer or quantum virtual machine.
"""
def __init__(self):
super().__init__(self)
self.p = bell_state()
self.qc = qvm()
# Make sure we can connect to the servers
test_quantum_connection()
def random(self):
"""Get the next random number in the range [0.0, 1.0)."""
return (int.from_bytes(self.getrandbits(56, 'bytes'), 'big') >> 3) * RECIP_BPF
def getrandbits(self, k, x="int"):
"""getrandbits(k) -> x. generates an integer with k random bits"""
if k <= 0:
raise ValueError("Number of bits should be greater than 0")
if k != int(k):
raise ValueError("Number of bits should be an integer")
out = bits_to_bytes(arr_to_bits(self.qc.run_and_measure(self.p, trials=k)[0]))
if x in ('int', 'INT'):
return int.from_bytes(out, 'big')
elif x in ('bytes', 'b'):
return out
else:
raise ValueError(str(x) + ' not a valid type (int, bytes)')
def _test_generator(n, func, args):
import time
print(n, 'times', func.__name__)
total = 0.0
sqsum = 0.0
smallest = 1e10
largest = -1e10
t0 = time.time()
for i in range(n):
x = func(*args)
total += x
sqsum = sqsum + x*x
smallest = min(x, smallest)
largest = max(x, largest)
t1 = time.time()
print(round(t1 - t0, 3), 'sec,', end=' ')
avg = total/n
stddev = _sqrt(sqsum / n - avg*avg)
print('avg %g, stddev %g, min %g, max %gn' %
(avg, stddev, smallest, largest))
def _test(N=2000):
_test_generator(N, random, ())
# Create one instance, seeded from current time, and export its methods
# as module-level functions. The functions share state across all uses
#(both in the user's code and in the Python libraries), but that's fine
# for most programs and is easier for the casual user than making them
# instantiate their own QRandom() instance.
_inst = QRandom()
#seed = _inst.seed
random = _inst.random
randint = _inst.randint
randrange = _inst.randrange
getstate = _inst.getstate
setstate = _inst.setstate
getrandbits = _inst.getrandbits
if __name__ == '__main__':
_test(2)
vm.py
import os
def start_servers():
try:
os.system("gnome-terminal -e 'qvm -S'")
os.system("gnome-terminal -e 'quilc -S'")
except:
try:
os.system("terminal -e 'qvm -S'")
os.system("terminal -e 'quilc -S'")
except:
exit()
python-3.x random generator quantum-computing
New contributor
$endgroup$
add a comment |
$begingroup$
I'm working on a Quantum Random Number Generator and wanted to get some feedback on the project so far.
I'm using PyQuil to generate machine code for the quantum computer, first to create a bell state placing our random bit into a superposition, then I measure the bit to collapse the superposition and repeat the process for N bits.
I'm a little concerned because I haven't been able to come across much data in terms of how long it takes to restore a qubit to a superposition so I can't really say how fast this program is going to work, but on my virtual quantum computer it runs okayish,~0.5 seconds to generate 512 bits, ~1 second for 1024 bits, ~2.09 seconds for 2048 bits.
The QRandom class is a subclass of the Random() class, figured it was easier to re-use than reinvent the wheel completely.
qrandom.py:
"""
Random variable generator using quantum machines
"""
from math import sqrt as _sqrt
import random
import psutil
from pyquil.quil import Program
from pyquil.api import get_qc
from pyquil.gates import H, CNOT
import vm
__all__ = ["QRandom", "random", "randint", "randrange", "getstate", "setstate", "getrandbits"]
BPF = 53 # Number of bits in a float
RECIP_BPF = 2**-BPF
def bell_state():
"""Returns the Program object of a bell state operation on a quantum computer
"""
return Program(H(0), CNOT(0, 1))
def arr_to_int(arr):
"""returns an integer from an array of binary numbers
arr = [1 0 1 0 1 0 1] || [1,0,1,0,1,0,1]
"""
return int(''.join([str(i) for i in arr]), 2)
def arr_to_bits(arr):
return ''.join([str(i) for i in arr])
def int_to_bytes(k, x=64):
"""returns a bytes object of the integer k with x bytes"""
#return bytes(k,x)
return bytes(''.join(str(1 & int(k) >> i) for i in range(x)[::-1]), 'utf-8')
def bits_to_bytes(k):
"""returns a bytes object of the bitstring k"""
return int(k, 2).to_bytes((len(k) + 7) // 8, 'big')
def qvm():
"""Returns the quantum computer or virtual machine"""
return get_qc('9q-square-qvm')
def test_quantum_connection():
"""
Tests the connection to the quantum virtual machine.
attempts to start the virtual machine if possible
"""
while True:
qvm_running = False
quilc_running = False
for proc in psutil.process_iter():
if 'qvm' in proc.name().lower():
qvm_running = True
elif 'quilc' in proc.name().lower():
quilc_running = True
if qvm_running is False or quilc_running is False:
try:
vm.start_servers()
except Exception as e:
raise Exception(e)
else:
break
class QRandom(random.Random):
"""Quantum random number generator
Generates a random number by collapsing bell states on a
quantum computer or quantum virtual machine.
"""
def __init__(self):
super().__init__(self)
self.p = bell_state()
self.qc = qvm()
# Make sure we can connect to the servers
test_quantum_connection()
def random(self):
"""Get the next random number in the range [0.0, 1.0)."""
return (int.from_bytes(self.getrandbits(56, 'bytes'), 'big') >> 3) * RECIP_BPF
def getrandbits(self, k, x="int"):
"""getrandbits(k) -> x. generates an integer with k random bits"""
if k <= 0:
raise ValueError("Number of bits should be greater than 0")
if k != int(k):
raise ValueError("Number of bits should be an integer")
out = bits_to_bytes(arr_to_bits(self.qc.run_and_measure(self.p, trials=k)[0]))
if x in ('int', 'INT'):
return int.from_bytes(out, 'big')
elif x in ('bytes', 'b'):
return out
else:
raise ValueError(str(x) + ' not a valid type (int, bytes)')
def _test_generator(n, func, args):
import time
print(n, 'times', func.__name__)
total = 0.0
sqsum = 0.0
smallest = 1e10
largest = -1e10
t0 = time.time()
for i in range(n):
x = func(*args)
total += x
sqsum = sqsum + x*x
smallest = min(x, smallest)
largest = max(x, largest)
t1 = time.time()
print(round(t1 - t0, 3), 'sec,', end=' ')
avg = total/n
stddev = _sqrt(sqsum / n - avg*avg)
print('avg %g, stddev %g, min %g, max %gn' %
(avg, stddev, smallest, largest))
def _test(N=2000):
_test_generator(N, random, ())
# Create one instance, seeded from current time, and export its methods
# as module-level functions. The functions share state across all uses
#(both in the user's code and in the Python libraries), but that's fine
# for most programs and is easier for the casual user than making them
# instantiate their own QRandom() instance.
_inst = QRandom()
#seed = _inst.seed
random = _inst.random
randint = _inst.randint
randrange = _inst.randrange
getstate = _inst.getstate
setstate = _inst.setstate
getrandbits = _inst.getrandbits
if __name__ == '__main__':
_test(2)
vm.py
import os
def start_servers():
try:
os.system("gnome-terminal -e 'qvm -S'")
os.system("gnome-terminal -e 'quilc -S'")
except:
try:
os.system("terminal -e 'qvm -S'")
os.system("terminal -e 'quilc -S'")
except:
exit()
python-3.x random generator quantum-computing
New contributor
$endgroup$
add a comment |
$begingroup$
I'm working on a Quantum Random Number Generator and wanted to get some feedback on the project so far.
I'm using PyQuil to generate machine code for the quantum computer, first to create a bell state placing our random bit into a superposition, then I measure the bit to collapse the superposition and repeat the process for N bits.
I'm a little concerned because I haven't been able to come across much data in terms of how long it takes to restore a qubit to a superposition so I can't really say how fast this program is going to work, but on my virtual quantum computer it runs okayish,~0.5 seconds to generate 512 bits, ~1 second for 1024 bits, ~2.09 seconds for 2048 bits.
The QRandom class is a subclass of the Random() class, figured it was easier to re-use than reinvent the wheel completely.
qrandom.py:
"""
Random variable generator using quantum machines
"""
from math import sqrt as _sqrt
import random
import psutil
from pyquil.quil import Program
from pyquil.api import get_qc
from pyquil.gates import H, CNOT
import vm
__all__ = ["QRandom", "random", "randint", "randrange", "getstate", "setstate", "getrandbits"]
BPF = 53 # Number of bits in a float
RECIP_BPF = 2**-BPF
def bell_state():
"""Returns the Program object of a bell state operation on a quantum computer
"""
return Program(H(0), CNOT(0, 1))
def arr_to_int(arr):
"""returns an integer from an array of binary numbers
arr = [1 0 1 0 1 0 1] || [1,0,1,0,1,0,1]
"""
return int(''.join([str(i) for i in arr]), 2)
def arr_to_bits(arr):
return ''.join([str(i) for i in arr])
def int_to_bytes(k, x=64):
"""returns a bytes object of the integer k with x bytes"""
#return bytes(k,x)
return bytes(''.join(str(1 & int(k) >> i) for i in range(x)[::-1]), 'utf-8')
def bits_to_bytes(k):
"""returns a bytes object of the bitstring k"""
return int(k, 2).to_bytes((len(k) + 7) // 8, 'big')
def qvm():
"""Returns the quantum computer or virtual machine"""
return get_qc('9q-square-qvm')
def test_quantum_connection():
"""
Tests the connection to the quantum virtual machine.
attempts to start the virtual machine if possible
"""
while True:
qvm_running = False
quilc_running = False
for proc in psutil.process_iter():
if 'qvm' in proc.name().lower():
qvm_running = True
elif 'quilc' in proc.name().lower():
quilc_running = True
if qvm_running is False or quilc_running is False:
try:
vm.start_servers()
except Exception as e:
raise Exception(e)
else:
break
class QRandom(random.Random):
"""Quantum random number generator
Generates a random number by collapsing bell states on a
quantum computer or quantum virtual machine.
"""
def __init__(self):
super().__init__(self)
self.p = bell_state()
self.qc = qvm()
# Make sure we can connect to the servers
test_quantum_connection()
def random(self):
"""Get the next random number in the range [0.0, 1.0)."""
return (int.from_bytes(self.getrandbits(56, 'bytes'), 'big') >> 3) * RECIP_BPF
def getrandbits(self, k, x="int"):
"""getrandbits(k) -> x. generates an integer with k random bits"""
if k <= 0:
raise ValueError("Number of bits should be greater than 0")
if k != int(k):
raise ValueError("Number of bits should be an integer")
out = bits_to_bytes(arr_to_bits(self.qc.run_and_measure(self.p, trials=k)[0]))
if x in ('int', 'INT'):
return int.from_bytes(out, 'big')
elif x in ('bytes', 'b'):
return out
else:
raise ValueError(str(x) + ' not a valid type (int, bytes)')
def _test_generator(n, func, args):
import time
print(n, 'times', func.__name__)
total = 0.0
sqsum = 0.0
smallest = 1e10
largest = -1e10
t0 = time.time()
for i in range(n):
x = func(*args)
total += x
sqsum = sqsum + x*x
smallest = min(x, smallest)
largest = max(x, largest)
t1 = time.time()
print(round(t1 - t0, 3), 'sec,', end=' ')
avg = total/n
stddev = _sqrt(sqsum / n - avg*avg)
print('avg %g, stddev %g, min %g, max %gn' %
(avg, stddev, smallest, largest))
def _test(N=2000):
_test_generator(N, random, ())
# Create one instance, seeded from current time, and export its methods
# as module-level functions. The functions share state across all uses
#(both in the user's code and in the Python libraries), but that's fine
# for most programs and is easier for the casual user than making them
# instantiate their own QRandom() instance.
_inst = QRandom()
#seed = _inst.seed
random = _inst.random
randint = _inst.randint
randrange = _inst.randrange
getstate = _inst.getstate
setstate = _inst.setstate
getrandbits = _inst.getrandbits
if __name__ == '__main__':
_test(2)
vm.py
import os
def start_servers():
try:
os.system("gnome-terminal -e 'qvm -S'")
os.system("gnome-terminal -e 'quilc -S'")
except:
try:
os.system("terminal -e 'qvm -S'")
os.system("terminal -e 'quilc -S'")
except:
exit()
python-3.x random generator quantum-computing
New contributor
$endgroup$
I'm working on a Quantum Random Number Generator and wanted to get some feedback on the project so far.
I'm using PyQuil to generate machine code for the quantum computer, first to create a bell state placing our random bit into a superposition, then I measure the bit to collapse the superposition and repeat the process for N bits.
I'm a little concerned because I haven't been able to come across much data in terms of how long it takes to restore a qubit to a superposition so I can't really say how fast this program is going to work, but on my virtual quantum computer it runs okayish,~0.5 seconds to generate 512 bits, ~1 second for 1024 bits, ~2.09 seconds for 2048 bits.
The QRandom class is a subclass of the Random() class, figured it was easier to re-use than reinvent the wheel completely.
qrandom.py:
"""
Random variable generator using quantum machines
"""
from math import sqrt as _sqrt
import random
import psutil
from pyquil.quil import Program
from pyquil.api import get_qc
from pyquil.gates import H, CNOT
import vm
__all__ = ["QRandom", "random", "randint", "randrange", "getstate", "setstate", "getrandbits"]
BPF = 53 # Number of bits in a float
RECIP_BPF = 2**-BPF
def bell_state():
"""Returns the Program object of a bell state operation on a quantum computer
"""
return Program(H(0), CNOT(0, 1))
def arr_to_int(arr):
"""returns an integer from an array of binary numbers
arr = [1 0 1 0 1 0 1] || [1,0,1,0,1,0,1]
"""
return int(''.join([str(i) for i in arr]), 2)
def arr_to_bits(arr):
return ''.join([str(i) for i in arr])
def int_to_bytes(k, x=64):
"""returns a bytes object of the integer k with x bytes"""
#return bytes(k,x)
return bytes(''.join(str(1 & int(k) >> i) for i in range(x)[::-1]), 'utf-8')
def bits_to_bytes(k):
"""returns a bytes object of the bitstring k"""
return int(k, 2).to_bytes((len(k) + 7) // 8, 'big')
def qvm():
"""Returns the quantum computer or virtual machine"""
return get_qc('9q-square-qvm')
def test_quantum_connection():
"""
Tests the connection to the quantum virtual machine.
attempts to start the virtual machine if possible
"""
while True:
qvm_running = False
quilc_running = False
for proc in psutil.process_iter():
if 'qvm' in proc.name().lower():
qvm_running = True
elif 'quilc' in proc.name().lower():
quilc_running = True
if qvm_running is False or quilc_running is False:
try:
vm.start_servers()
except Exception as e:
raise Exception(e)
else:
break
class QRandom(random.Random):
"""Quantum random number generator
Generates a random number by collapsing bell states on a
quantum computer or quantum virtual machine.
"""
def __init__(self):
super().__init__(self)
self.p = bell_state()
self.qc = qvm()
# Make sure we can connect to the servers
test_quantum_connection()
def random(self):
"""Get the next random number in the range [0.0, 1.0)."""
return (int.from_bytes(self.getrandbits(56, 'bytes'), 'big') >> 3) * RECIP_BPF
def getrandbits(self, k, x="int"):
"""getrandbits(k) -> x. generates an integer with k random bits"""
if k <= 0:
raise ValueError("Number of bits should be greater than 0")
if k != int(k):
raise ValueError("Number of bits should be an integer")
out = bits_to_bytes(arr_to_bits(self.qc.run_and_measure(self.p, trials=k)[0]))
if x in ('int', 'INT'):
return int.from_bytes(out, 'big')
elif x in ('bytes', 'b'):
return out
else:
raise ValueError(str(x) + ' not a valid type (int, bytes)')
def _test_generator(n, func, args):
import time
print(n, 'times', func.__name__)
total = 0.0
sqsum = 0.0
smallest = 1e10
largest = -1e10
t0 = time.time()
for i in range(n):
x = func(*args)
total += x
sqsum = sqsum + x*x
smallest = min(x, smallest)
largest = max(x, largest)
t1 = time.time()
print(round(t1 - t0, 3), 'sec,', end=' ')
avg = total/n
stddev = _sqrt(sqsum / n - avg*avg)
print('avg %g, stddev %g, min %g, max %gn' %
(avg, stddev, smallest, largest))
def _test(N=2000):
_test_generator(N, random, ())
# Create one instance, seeded from current time, and export its methods
# as module-level functions. The functions share state across all uses
#(both in the user's code and in the Python libraries), but that's fine
# for most programs and is easier for the casual user than making them
# instantiate their own QRandom() instance.
_inst = QRandom()
#seed = _inst.seed
random = _inst.random
randint = _inst.randint
randrange = _inst.randrange
getstate = _inst.getstate
setstate = _inst.setstate
getrandbits = _inst.getrandbits
if __name__ == '__main__':
_test(2)
vm.py
import os
def start_servers():
try:
os.system("gnome-terminal -e 'qvm -S'")
os.system("gnome-terminal -e 'quilc -S'")
except:
try:
os.system("terminal -e 'qvm -S'")
os.system("terminal -e 'quilc -S'")
except:
exit()
python-3.x random generator quantum-computing
python-3.x random generator quantum-computing
New contributor
New contributor
New contributor
asked 11 mins ago
Noah WoodNoah Wood
1
1
New contributor
New contributor
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
);
);
, "mathjax-editing");
StackExchange.ifUsing("editor", function ()
StackExchange.using("externalEditor", function ()
StackExchange.using("snippets", function ()
StackExchange.snippets.init();
);
);
, "code-snippets");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "196"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Noah Wood is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f216756%2fquantum-random-number-generator%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Noah Wood is a new contributor. Be nice, and check out our Code of Conduct.
Noah Wood is a new contributor. Be nice, and check out our Code of Conduct.
Noah Wood is a new contributor. Be nice, and check out our Code of Conduct.
Noah Wood is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Code Review Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f216756%2fquantum-random-number-generator%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown