Circuitry of TV splittersHow boost a DVB-C signalReradiating antena for GPSWhat level of a square wave signal should be safe for TV receivers?Amplifying AC voltage via DC supply voltageSIM808 can't get GPS fix on custom boardWhy do I have 120v coming out of a 240v cableDoes the feed line contribute to the function of a PCB patch antenna?UHF TV transmitting circuitryShielded cable, to ground or not, in amplifierAmplifier advice for speech sythesizer circuit

Set-theoretical foundations of Mathematics with only bounded quantifiers

Can Medicine checks be used, with decent rolls, to completely mitigate the risk of death from ongoing damage?

Email Account under attack (really) - anything I can do?

Can I make popcorn with any corn?

What are these boxed doors outside store fronts in New York?

Is there really no realistic way for a skeleton monster to move around without magic?

What makes Graph invariants so useful/important?

What typically incentivizes a professor to change jobs to a lower ranking university?

Pronouncing Dictionary.com's W.O.D "vade mecum" in English

Why did the Germans forbid the possession of pet pigeons in Rostov-on-Don in 1941?

Infinite past with a beginning?

Is there a familial term for apples and pears?

Can a German sentence have two subjects?

What is the command to reset a PC without deleting any files

Simulate Bitwise Cyclic Tag

Why is "Reports" in sentence down without "The"

Can an x86 CPU running in real mode be considered to be basically an 8086 CPU?

"You are your self first supporter", a more proper way to say it

Possibly bubble sort algorithm

Why has Russell's definition of numbers using equivalence classes been finally abandoned? ( If it has actually been abandoned).

Example of a relative pronoun

Why was the small council so happy for Tyrion to become the Master of Coin?

Why is this code 6.5x slower with optimizations enabled?

How did the USSR manage to innovate in an environment characterized by government censorship and high bureaucracy?



Circuitry of TV splitters


How boost a DVB-C signalReradiating antena for GPSWhat level of a square wave signal should be safe for TV receivers?Amplifying AC voltage via DC supply voltageSIM808 can't get GPS fix on custom boardWhy do I have 120v coming out of a 240v cableDoes the feed line contribute to the function of a PCB patch antenna?UHF TV transmitting circuitryShielded cable, to ground or not, in amplifierAmplifier advice for speech sythesizer circuit






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








1












$begingroup$


I'm trying to understand the circuitry of TV signal splitters and associated boosters/amplifiers, and I have two questions.
My situation is as follows. I have a TV aerial (antenna) in my loft. It connects to a non-powered box, which I assume must be a passive splitter. From there cables run to sockets in a total of 6 rooms. However, only in two or three of those rooms does a TV connected to the socket show any signal; and even in those rooms, there is no signal unless a booster, located in the room nearest to the aerial, is connected and powered up.
That all sounds sensible, but then I stop being able to understand.



  1. Here's the odd thing, and the first question. To make any TV on the system work, the booster has to be connected to the aerial socket, but nothing needs to be connected to the booster output; so long as the booster is connected and switched on, the TV in a neighbouring room will work. It's as though it is somehow sending the amplified signal back up its input cable. But I've looked at circuit diagrams for boosters, and that doesn't look possible. Can anyone explain what is going on?


  2. I am trying to find out what is wrong in the rooms where no signal is ever reported. I read somewhere that if I look across the terminals of the TV socket with an ohmmeter, I should see effectively zero resistance, since there is continuity through the aerial. However, this is not true for any of my sockets. With all devices disconnected, if I look at the resistance at the socket the booster normally connects to, I see about 4k. If I look across any of the other sockets (including those where a signal is successfully received), I see no continuity at all. So I suppose that the passive splitter must have a capacitor or transformer somewhere in its circuitry, but I can't find a circuit diagram anywhere that would show whether this is true. Can anyone say whether this is the case, i.e. whether I should be able to see continuity when looking into a socket?


Background information:



  • Until recently we have never tried to use TVs in the rooms where we now find they don't work, so this is probably not a new problem.

  • In particular, the non-functioning sockets have not been used since the analogue era.

  • The wiring is probably at least 30 years old, and certainly pre-digital.

  • I'm in the UK, and the TV signal is digital terrestrial.

  • Fitting an outdoor aerial to get a better original signal is not an option in our neighbourhood.

  • The passive splitter and aerial connections are all screw-downs, and they are not conveniently located, so swapping cables around for test purposes is slow and painful.









share|improve this question









New contributor




seglea is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    I don't think you can get sensible readings when poking an ohmmeter into antenna sockets that are being driven with RF energy signal. One thing might be that the signal is too strong so it kind of blindfolds the TV analog RF frontend so it can't see the signal. Then when you have some loads connected like the booster, it is a load that reduces power to other device that can then see the signal better. So maybe you just need more attenuation between TV and antenna socket.
    $endgroup$
    – Justme
    2 hours ago











  • $begingroup$
    If cables are unterminated they can represent harmonic 1/4 wave short circuits at those wavelengths to some rooms on some channels. But poor cable shields nicked can also degrade signals.
    $endgroup$
    – Sunnyskyguy EE75
    2 hours ago


















1












$begingroup$


I'm trying to understand the circuitry of TV signal splitters and associated boosters/amplifiers, and I have two questions.
My situation is as follows. I have a TV aerial (antenna) in my loft. It connects to a non-powered box, which I assume must be a passive splitter. From there cables run to sockets in a total of 6 rooms. However, only in two or three of those rooms does a TV connected to the socket show any signal; and even in those rooms, there is no signal unless a booster, located in the room nearest to the aerial, is connected and powered up.
That all sounds sensible, but then I stop being able to understand.



  1. Here's the odd thing, and the first question. To make any TV on the system work, the booster has to be connected to the aerial socket, but nothing needs to be connected to the booster output; so long as the booster is connected and switched on, the TV in a neighbouring room will work. It's as though it is somehow sending the amplified signal back up its input cable. But I've looked at circuit diagrams for boosters, and that doesn't look possible. Can anyone explain what is going on?


  2. I am trying to find out what is wrong in the rooms where no signal is ever reported. I read somewhere that if I look across the terminals of the TV socket with an ohmmeter, I should see effectively zero resistance, since there is continuity through the aerial. However, this is not true for any of my sockets. With all devices disconnected, if I look at the resistance at the socket the booster normally connects to, I see about 4k. If I look across any of the other sockets (including those where a signal is successfully received), I see no continuity at all. So I suppose that the passive splitter must have a capacitor or transformer somewhere in its circuitry, but I can't find a circuit diagram anywhere that would show whether this is true. Can anyone say whether this is the case, i.e. whether I should be able to see continuity when looking into a socket?


Background information:



  • Until recently we have never tried to use TVs in the rooms where we now find they don't work, so this is probably not a new problem.

  • In particular, the non-functioning sockets have not been used since the analogue era.

  • The wiring is probably at least 30 years old, and certainly pre-digital.

  • I'm in the UK, and the TV signal is digital terrestrial.

  • Fitting an outdoor aerial to get a better original signal is not an option in our neighbourhood.

  • The passive splitter and aerial connections are all screw-downs, and they are not conveniently located, so swapping cables around for test purposes is slow and painful.









share|improve this question









New contributor




seglea is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    I don't think you can get sensible readings when poking an ohmmeter into antenna sockets that are being driven with RF energy signal. One thing might be that the signal is too strong so it kind of blindfolds the TV analog RF frontend so it can't see the signal. Then when you have some loads connected like the booster, it is a load that reduces power to other device that can then see the signal better. So maybe you just need more attenuation between TV and antenna socket.
    $endgroup$
    – Justme
    2 hours ago











  • $begingroup$
    If cables are unterminated they can represent harmonic 1/4 wave short circuits at those wavelengths to some rooms on some channels. But poor cable shields nicked can also degrade signals.
    $endgroup$
    – Sunnyskyguy EE75
    2 hours ago














1












1








1





$begingroup$


I'm trying to understand the circuitry of TV signal splitters and associated boosters/amplifiers, and I have two questions.
My situation is as follows. I have a TV aerial (antenna) in my loft. It connects to a non-powered box, which I assume must be a passive splitter. From there cables run to sockets in a total of 6 rooms. However, only in two or three of those rooms does a TV connected to the socket show any signal; and even in those rooms, there is no signal unless a booster, located in the room nearest to the aerial, is connected and powered up.
That all sounds sensible, but then I stop being able to understand.



  1. Here's the odd thing, and the first question. To make any TV on the system work, the booster has to be connected to the aerial socket, but nothing needs to be connected to the booster output; so long as the booster is connected and switched on, the TV in a neighbouring room will work. It's as though it is somehow sending the amplified signal back up its input cable. But I've looked at circuit diagrams for boosters, and that doesn't look possible. Can anyone explain what is going on?


  2. I am trying to find out what is wrong in the rooms where no signal is ever reported. I read somewhere that if I look across the terminals of the TV socket with an ohmmeter, I should see effectively zero resistance, since there is continuity through the aerial. However, this is not true for any of my sockets. With all devices disconnected, if I look at the resistance at the socket the booster normally connects to, I see about 4k. If I look across any of the other sockets (including those where a signal is successfully received), I see no continuity at all. So I suppose that the passive splitter must have a capacitor or transformer somewhere in its circuitry, but I can't find a circuit diagram anywhere that would show whether this is true. Can anyone say whether this is the case, i.e. whether I should be able to see continuity when looking into a socket?


Background information:



  • Until recently we have never tried to use TVs in the rooms where we now find they don't work, so this is probably not a new problem.

  • In particular, the non-functioning sockets have not been used since the analogue era.

  • The wiring is probably at least 30 years old, and certainly pre-digital.

  • I'm in the UK, and the TV signal is digital terrestrial.

  • Fitting an outdoor aerial to get a better original signal is not an option in our neighbourhood.

  • The passive splitter and aerial connections are all screw-downs, and they are not conveniently located, so swapping cables around for test purposes is slow and painful.









share|improve this question









New contributor




seglea is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




I'm trying to understand the circuitry of TV signal splitters and associated boosters/amplifiers, and I have two questions.
My situation is as follows. I have a TV aerial (antenna) in my loft. It connects to a non-powered box, which I assume must be a passive splitter. From there cables run to sockets in a total of 6 rooms. However, only in two or three of those rooms does a TV connected to the socket show any signal; and even in those rooms, there is no signal unless a booster, located in the room nearest to the aerial, is connected and powered up.
That all sounds sensible, but then I stop being able to understand.



  1. Here's the odd thing, and the first question. To make any TV on the system work, the booster has to be connected to the aerial socket, but nothing needs to be connected to the booster output; so long as the booster is connected and switched on, the TV in a neighbouring room will work. It's as though it is somehow sending the amplified signal back up its input cable. But I've looked at circuit diagrams for boosters, and that doesn't look possible. Can anyone explain what is going on?


  2. I am trying to find out what is wrong in the rooms where no signal is ever reported. I read somewhere that if I look across the terminals of the TV socket with an ohmmeter, I should see effectively zero resistance, since there is continuity through the aerial. However, this is not true for any of my sockets. With all devices disconnected, if I look at the resistance at the socket the booster normally connects to, I see about 4k. If I look across any of the other sockets (including those where a signal is successfully received), I see no continuity at all. So I suppose that the passive splitter must have a capacitor or transformer somewhere in its circuitry, but I can't find a circuit diagram anywhere that would show whether this is true. Can anyone say whether this is the case, i.e. whether I should be able to see continuity when looking into a socket?


Background information:



  • Until recently we have never tried to use TVs in the rooms where we now find they don't work, so this is probably not a new problem.

  • In particular, the non-functioning sockets have not been used since the analogue era.

  • The wiring is probably at least 30 years old, and certainly pre-digital.

  • I'm in the UK, and the TV signal is digital terrestrial.

  • Fitting an outdoor aerial to get a better original signal is not an option in our neighbourhood.

  • The passive splitter and aerial connections are all screw-downs, and they are not conveniently located, so swapping cables around for test purposes is slow and painful.






amplifier antenna tv






share|improve this question









New contributor




seglea is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|improve this question









New contributor




seglea is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|improve this question




share|improve this question








edited 1 hour ago









Dave Tweed

123k9152266




123k9152266






New contributor




seglea is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 2 hours ago









segleaseglea

61




61




New contributor




seglea is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





seglea is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






seglea is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











  • $begingroup$
    I don't think you can get sensible readings when poking an ohmmeter into antenna sockets that are being driven with RF energy signal. One thing might be that the signal is too strong so it kind of blindfolds the TV analog RF frontend so it can't see the signal. Then when you have some loads connected like the booster, it is a load that reduces power to other device that can then see the signal better. So maybe you just need more attenuation between TV and antenna socket.
    $endgroup$
    – Justme
    2 hours ago











  • $begingroup$
    If cables are unterminated they can represent harmonic 1/4 wave short circuits at those wavelengths to some rooms on some channels. But poor cable shields nicked can also degrade signals.
    $endgroup$
    – Sunnyskyguy EE75
    2 hours ago

















  • $begingroup$
    I don't think you can get sensible readings when poking an ohmmeter into antenna sockets that are being driven with RF energy signal. One thing might be that the signal is too strong so it kind of blindfolds the TV analog RF frontend so it can't see the signal. Then when you have some loads connected like the booster, it is a load that reduces power to other device that can then see the signal better. So maybe you just need more attenuation between TV and antenna socket.
    $endgroup$
    – Justme
    2 hours ago











  • $begingroup$
    If cables are unterminated they can represent harmonic 1/4 wave short circuits at those wavelengths to some rooms on some channels. But poor cable shields nicked can also degrade signals.
    $endgroup$
    – Sunnyskyguy EE75
    2 hours ago
















$begingroup$
I don't think you can get sensible readings when poking an ohmmeter into antenna sockets that are being driven with RF energy signal. One thing might be that the signal is too strong so it kind of blindfolds the TV analog RF frontend so it can't see the signal. Then when you have some loads connected like the booster, it is a load that reduces power to other device that can then see the signal better. So maybe you just need more attenuation between TV and antenna socket.
$endgroup$
– Justme
2 hours ago





$begingroup$
I don't think you can get sensible readings when poking an ohmmeter into antenna sockets that are being driven with RF energy signal. One thing might be that the signal is too strong so it kind of blindfolds the TV analog RF frontend so it can't see the signal. Then when you have some loads connected like the booster, it is a load that reduces power to other device that can then see the signal better. So maybe you just need more attenuation between TV and antenna socket.
$endgroup$
– Justme
2 hours ago













$begingroup$
If cables are unterminated they can represent harmonic 1/4 wave short circuits at those wavelengths to some rooms on some channels. But poor cable shields nicked can also degrade signals.
$endgroup$
– Sunnyskyguy EE75
2 hours ago





$begingroup$
If cables are unterminated they can represent harmonic 1/4 wave short circuits at those wavelengths to some rooms on some channels. But poor cable shields nicked can also degrade signals.
$endgroup$
– Sunnyskyguy EE75
2 hours ago











2 Answers
2






active

oldest

votes


















4












$begingroup$

You've made some wrong assumptions about what the parts of the system are. The part you're describing as a non-powered passive splitter is actually a powered active splitter. Splitting one aerial signal into six with a passive splitter is unlikely to give you sufficient signal on any of the six outputs, especially if the aerial is in the loft.



The part you're describing as the booster is just the power supply to the active splitter. It sends a DC voltage up the cable running to the active splitter, and filters it out of the cable running to the TV. That's why it has to be powered up for any of the TVs to work.



The rooms where TVs don't work are either down to a faulty output from the splitter or a defective cable. To do a basic test on each cable, disconnect it from the splitter and check that it's open circuit, then short one end together and check that it now shows a short circuit at the other end.






share|improve this answer









$endgroup$




















    0












    $begingroup$

    It is desirable to have the amplifier be as close to the aerial as possible and certainly prior to the signal being split, however getting mains power to said locations is often problematic.



    The solution to this is amplifiers that are powered via one of the output coax lines. The amplifier is sited close to the aerial while a power injection unit is sited close to the TV, These are often sold as "masthead" amplifiers. I believe this is the setup you have.



    I don't think you can read much into whether or not there is DC continuity on the output of an amplifier, whether you see it or not depends entirely on the details of the amplifiers internal circuitry.



    I would start with end to end continuity and short-circuit tests on the cable runs (note: some sockets have isolation capacitors, so you may need to test from the terminals on the back of the sockets rather than the connections on the face). If you find any opens or shorts then you obviously need to fix them.



    Failing that it may be worth swapping around connections to see if the problem follows the cable or follows the connection on the amplifier, but honestly given the age of the amplifier and the difficulty to access i'd be more inclined towards replacing the amplifier at that point.






    share|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("schematics", function ()
      StackExchange.schematics.init();
      );
      , "cicuitlab");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "135"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: false,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: null,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );






      seglea is a new contributor. Be nice, and check out our Code of Conduct.









      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2felectronics.stackexchange.com%2fquestions%2f431317%2fcircuitry-of-tv-splitters%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      4












      $begingroup$

      You've made some wrong assumptions about what the parts of the system are. The part you're describing as a non-powered passive splitter is actually a powered active splitter. Splitting one aerial signal into six with a passive splitter is unlikely to give you sufficient signal on any of the six outputs, especially if the aerial is in the loft.



      The part you're describing as the booster is just the power supply to the active splitter. It sends a DC voltage up the cable running to the active splitter, and filters it out of the cable running to the TV. That's why it has to be powered up for any of the TVs to work.



      The rooms where TVs don't work are either down to a faulty output from the splitter or a defective cable. To do a basic test on each cable, disconnect it from the splitter and check that it's open circuit, then short one end together and check that it now shows a short circuit at the other end.






      share|improve this answer









      $endgroup$

















        4












        $begingroup$

        You've made some wrong assumptions about what the parts of the system are. The part you're describing as a non-powered passive splitter is actually a powered active splitter. Splitting one aerial signal into six with a passive splitter is unlikely to give you sufficient signal on any of the six outputs, especially if the aerial is in the loft.



        The part you're describing as the booster is just the power supply to the active splitter. It sends a DC voltage up the cable running to the active splitter, and filters it out of the cable running to the TV. That's why it has to be powered up for any of the TVs to work.



        The rooms where TVs don't work are either down to a faulty output from the splitter or a defective cable. To do a basic test on each cable, disconnect it from the splitter and check that it's open circuit, then short one end together and check that it now shows a short circuit at the other end.






        share|improve this answer









        $endgroup$















          4












          4








          4





          $begingroup$

          You've made some wrong assumptions about what the parts of the system are. The part you're describing as a non-powered passive splitter is actually a powered active splitter. Splitting one aerial signal into six with a passive splitter is unlikely to give you sufficient signal on any of the six outputs, especially if the aerial is in the loft.



          The part you're describing as the booster is just the power supply to the active splitter. It sends a DC voltage up the cable running to the active splitter, and filters it out of the cable running to the TV. That's why it has to be powered up for any of the TVs to work.



          The rooms where TVs don't work are either down to a faulty output from the splitter or a defective cable. To do a basic test on each cable, disconnect it from the splitter and check that it's open circuit, then short one end together and check that it now shows a short circuit at the other end.






          share|improve this answer









          $endgroup$



          You've made some wrong assumptions about what the parts of the system are. The part you're describing as a non-powered passive splitter is actually a powered active splitter. Splitting one aerial signal into six with a passive splitter is unlikely to give you sufficient signal on any of the six outputs, especially if the aerial is in the loft.



          The part you're describing as the booster is just the power supply to the active splitter. It sends a DC voltage up the cable running to the active splitter, and filters it out of the cable running to the TV. That's why it has to be powered up for any of the TVs to work.



          The rooms where TVs don't work are either down to a faulty output from the splitter or a defective cable. To do a basic test on each cable, disconnect it from the splitter and check that it's open circuit, then short one end together and check that it now shows a short circuit at the other end.







          share|improve this answer












          share|improve this answer



          share|improve this answer










          answered 1 hour ago









          FinbarrFinbarr

          3,7671924




          3,7671924























              0












              $begingroup$

              It is desirable to have the amplifier be as close to the aerial as possible and certainly prior to the signal being split, however getting mains power to said locations is often problematic.



              The solution to this is amplifiers that are powered via one of the output coax lines. The amplifier is sited close to the aerial while a power injection unit is sited close to the TV, These are often sold as "masthead" amplifiers. I believe this is the setup you have.



              I don't think you can read much into whether or not there is DC continuity on the output of an amplifier, whether you see it or not depends entirely on the details of the amplifiers internal circuitry.



              I would start with end to end continuity and short-circuit tests on the cable runs (note: some sockets have isolation capacitors, so you may need to test from the terminals on the back of the sockets rather than the connections on the face). If you find any opens or shorts then you obviously need to fix them.



              Failing that it may be worth swapping around connections to see if the problem follows the cable or follows the connection on the amplifier, but honestly given the age of the amplifier and the difficulty to access i'd be more inclined towards replacing the amplifier at that point.






              share|improve this answer









              $endgroup$

















                0












                $begingroup$

                It is desirable to have the amplifier be as close to the aerial as possible and certainly prior to the signal being split, however getting mains power to said locations is often problematic.



                The solution to this is amplifiers that are powered via one of the output coax lines. The amplifier is sited close to the aerial while a power injection unit is sited close to the TV, These are often sold as "masthead" amplifiers. I believe this is the setup you have.



                I don't think you can read much into whether or not there is DC continuity on the output of an amplifier, whether you see it or not depends entirely on the details of the amplifiers internal circuitry.



                I would start with end to end continuity and short-circuit tests on the cable runs (note: some sockets have isolation capacitors, so you may need to test from the terminals on the back of the sockets rather than the connections on the face). If you find any opens or shorts then you obviously need to fix them.



                Failing that it may be worth swapping around connections to see if the problem follows the cable or follows the connection on the amplifier, but honestly given the age of the amplifier and the difficulty to access i'd be more inclined towards replacing the amplifier at that point.






                share|improve this answer









                $endgroup$















                  0












                  0








                  0





                  $begingroup$

                  It is desirable to have the amplifier be as close to the aerial as possible and certainly prior to the signal being split, however getting mains power to said locations is often problematic.



                  The solution to this is amplifiers that are powered via one of the output coax lines. The amplifier is sited close to the aerial while a power injection unit is sited close to the TV, These are often sold as "masthead" amplifiers. I believe this is the setup you have.



                  I don't think you can read much into whether or not there is DC continuity on the output of an amplifier, whether you see it or not depends entirely on the details of the amplifiers internal circuitry.



                  I would start with end to end continuity and short-circuit tests on the cable runs (note: some sockets have isolation capacitors, so you may need to test from the terminals on the back of the sockets rather than the connections on the face). If you find any opens or shorts then you obviously need to fix them.



                  Failing that it may be worth swapping around connections to see if the problem follows the cable or follows the connection on the amplifier, but honestly given the age of the amplifier and the difficulty to access i'd be more inclined towards replacing the amplifier at that point.






                  share|improve this answer









                  $endgroup$



                  It is desirable to have the amplifier be as close to the aerial as possible and certainly prior to the signal being split, however getting mains power to said locations is often problematic.



                  The solution to this is amplifiers that are powered via one of the output coax lines. The amplifier is sited close to the aerial while a power injection unit is sited close to the TV, These are often sold as "masthead" amplifiers. I believe this is the setup you have.



                  I don't think you can read much into whether or not there is DC continuity on the output of an amplifier, whether you see it or not depends entirely on the details of the amplifiers internal circuitry.



                  I would start with end to end continuity and short-circuit tests on the cable runs (note: some sockets have isolation capacitors, so you may need to test from the terminals on the back of the sockets rather than the connections on the face). If you find any opens or shorts then you obviously need to fix them.



                  Failing that it may be worth swapping around connections to see if the problem follows the cable or follows the connection on the amplifier, but honestly given the age of the amplifier and the difficulty to access i'd be more inclined towards replacing the amplifier at that point.







                  share|improve this answer












                  share|improve this answer



                  share|improve this answer










                  answered 1 hour ago









                  Peter GreenPeter Green

                  11.9k11940




                  11.9k11940




















                      seglea is a new contributor. Be nice, and check out our Code of Conduct.









                      draft saved

                      draft discarded


















                      seglea is a new contributor. Be nice, and check out our Code of Conduct.












                      seglea is a new contributor. Be nice, and check out our Code of Conduct.











                      seglea is a new contributor. Be nice, and check out our Code of Conduct.














                      Thanks for contributing an answer to Electrical Engineering Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2felectronics.stackexchange.com%2fquestions%2f431317%2fcircuitry-of-tv-splitters%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      名間水力發電廠 目录 沿革 設施 鄰近設施 註釋 外部連結 导航菜单23°50′10″N 120°42′41″E / 23.83611°N 120.71139°E / 23.83611; 120.7113923°50′10″N 120°42′41″E / 23.83611°N 120.71139°E / 23.83611; 120.71139計畫概要原始内容臺灣第一座BOT 模式開發的水力發電廠-名間水力電廠名間水力發電廠 水利署首件BOT案原始内容《小檔案》名間電廠 首座BOT水力發電廠原始内容名間電廠BOT - 經濟部水利署中區水資源局

                      Prove that NP is closed under karp reduction?Space(n) not closed under Karp reductions - what about NTime(n)?Class P is closed under rotation?Prove or disprove that $NL$ is closed under polynomial many-one reductions$mathbfNC_2$ is closed under log-space reductionOn Karp reductionwhen can I know if a class (complexity) is closed under reduction (cook/karp)Check if class $PSPACE$ is closed under polyonomially space reductionIs NPSPACE also closed under polynomial-time reduction and under log-space reduction?Prove PSPACE is closed under complement?Prove PSPACE is closed under union?

                      Is my guitar’s action too high? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Strings too stiff on a recently purchased acoustic guitar | Cort AD880CEIs the action of my guitar really high?Μy little finger is too weak to play guitarWith guitar, how long should I give my fingers to strengthen / callous?When playing a fret the guitar sounds mutedPlaying (Barre) chords up the guitar neckI think my guitar strings are wound too tight and I can't play barre chordsF barre chord on an SG guitarHow to find to the right strings of a barre chord by feel?High action on higher fret on my steel acoustic guitar