When to use the root test. Is this not a good situation to use it? The 2019 Stack Overflow Developer Survey Results Are InWhich test would be appropriate to use on this series to show convergence/divergence?Integral test vs root test vs ratio testHow to show convergence or divergence of a series when the ratio test is inconclusive?Root test with nested power function?Confused about using alternating test, ratio test, and root test (please help).Radius and interval of convergence of $sum_n=1^infty(-1)^nfracx^2n(2n)!$ by root and ratio test are different?How would I use root/ratio test on $sum_n=1^inftyleft(fracnn+1right)^n^2$?How would I know when to use what test for convergence?convergence of a sum fails with root testIntuition for Root Test.

Does it makes sense to buy a new cycle to learn riding?

Where does the "burst of radiance" from Holy Weapon originate?

How are circuits which use complex ICs normally simulated?

Idiomatic way to prevent slicing?

What does Linus Torvalds mean when he says that Git "never ever" tracks a file?

What is the steepest angle that a canal can be traversable without locks?

Limit to 0 ambiguity

What does "rabbited" mean/imply in this sentence?

What do hard-Brexiteers want with respect to the Irish border?

Is this food a bread or a loaf?

How to reverse every other sublist of a list?

Could JWST stay at L2 "forever"?

What spell level should this homebrew After-Image spell be?

Why is the maximum length of OpenWrt’s root password 8 characters?

I looked up a future colleague on LinkedIn before I started a job. I told my colleague about it and he seemed surprised. Should I apologize?

In microwave frequencies, do you use a circulator when you need a (near) perfect diode?

Potential by Assembling Charges

How is radar separation assured between primary and secondary targets?

Should I use my personal or workplace e-mail when registering to external websites for work purpose?

How to answer pointed "are you quitting" questioning when I don't want them to suspect

Extreme, unacceptable situation and I can't attend work tomorrow morning

Why is Grand Jury testimony secret?

What is the motivation for a law requiring 2 parties to consent for recording a conversation

Does a dangling wire really electrocute me if I'm standing in water?



When to use the root test. Is this not a good situation to use it?



The 2019 Stack Overflow Developer Survey Results Are InWhich test would be appropriate to use on this series to show convergence/divergence?Integral test vs root test vs ratio testHow to show convergence or divergence of a series when the ratio test is inconclusive?Root test with nested power function?Confused about using alternating test, ratio test, and root test (please help).Radius and interval of convergence of $sum_n=1^infty(-1)^nfracx^2n(2n)!$ by root and ratio test are different?How would I use root/ratio test on $sum_n=1^inftyleft(fracnn+1right)^n^2$?How would I know when to use what test for convergence?convergence of a sum fails with root testIntuition for Root Test.










2












$begingroup$


I'm having trouble seeing when to use the root test. nth powers occur, but I think the ratio test is easier:



enter image description here



Here is the problem:



$$sum_n=1^infty fracx^nn^44^n$$



So the ratio test seems to work here, but can't the root test be used to? The problem is that the $n^4$ doesnt play well with the root test right?



Here is the beginning of my solution with the ratio test:



$$biggr lbrack fraca_n+1a_n biggr rbrack = biggr lbrack fracx^n+1(n+1)^4 * 4^n+1 * fracn^4*4^nx^n biggr rbrack = biggr lbrack fracx*n^4(n+1)^4 * 4 biggr rbrack = fracx4$$



So I don't think the explanation for when to use the root test is totally right right? I can't really use it here because the $n^4$ causes some problems with the root test right?










share|cite|improve this question









$endgroup$
















    2












    $begingroup$


    I'm having trouble seeing when to use the root test. nth powers occur, but I think the ratio test is easier:



    enter image description here



    Here is the problem:



    $$sum_n=1^infty fracx^nn^44^n$$



    So the ratio test seems to work here, but can't the root test be used to? The problem is that the $n^4$ doesnt play well with the root test right?



    Here is the beginning of my solution with the ratio test:



    $$biggr lbrack fraca_n+1a_n biggr rbrack = biggr lbrack fracx^n+1(n+1)^4 * 4^n+1 * fracn^4*4^nx^n biggr rbrack = biggr lbrack fracx*n^4(n+1)^4 * 4 biggr rbrack = fracx4$$



    So I don't think the explanation for when to use the root test is totally right right? I can't really use it here because the $n^4$ causes some problems with the root test right?










    share|cite|improve this question









    $endgroup$














      2












      2








      2





      $begingroup$


      I'm having trouble seeing when to use the root test. nth powers occur, but I think the ratio test is easier:



      enter image description here



      Here is the problem:



      $$sum_n=1^infty fracx^nn^44^n$$



      So the ratio test seems to work here, but can't the root test be used to? The problem is that the $n^4$ doesnt play well with the root test right?



      Here is the beginning of my solution with the ratio test:



      $$biggr lbrack fraca_n+1a_n biggr rbrack = biggr lbrack fracx^n+1(n+1)^4 * 4^n+1 * fracn^4*4^nx^n biggr rbrack = biggr lbrack fracx*n^4(n+1)^4 * 4 biggr rbrack = fracx4$$



      So I don't think the explanation for when to use the root test is totally right right? I can't really use it here because the $n^4$ causes some problems with the root test right?










      share|cite|improve this question









      $endgroup$




      I'm having trouble seeing when to use the root test. nth powers occur, but I think the ratio test is easier:



      enter image description here



      Here is the problem:



      $$sum_n=1^infty fracx^nn^44^n$$



      So the ratio test seems to work here, but can't the root test be used to? The problem is that the $n^4$ doesnt play well with the root test right?



      Here is the beginning of my solution with the ratio test:



      $$biggr lbrack fraca_n+1a_n biggr rbrack = biggr lbrack fracx^n+1(n+1)^4 * 4^n+1 * fracn^4*4^nx^n biggr rbrack = biggr lbrack fracx*n^4(n+1)^4 * 4 biggr rbrack = fracx4$$



      So I don't think the explanation for when to use the root test is totally right right? I can't really use it here because the $n^4$ causes some problems with the root test right?







      sequences-and-series






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 4 hours ago









      Jwan622Jwan622

      2,38011632




      2,38011632




















          2 Answers
          2






          active

          oldest

          votes


















          4












          $begingroup$

          It doesn't cause any problems, because $lim_ntoinftysqrt[n]n^4=1.$ Actually, the root test is stronger than the ratio test. Sometimes the root test limit exists, but the ratio test limit does not. However, if they both exist, then they are equal. Which is why if one limit is $1$ you shouldn't try the other, even though the root test is stronger.






          share|cite|improve this answer









          $endgroup$




















            2












            $begingroup$

            When doing a root test,
            powers of $n$ can be ignored
            because,
            for any fixed $k$,



            $lim_n to infty (n^k)^1/n
            =1
            $
            .



            This is because
            $ (n^k)^1/n
            =n^k/n
            =e^k ln(n)/n
            $

            and
            $lim_n to infty fracln(n)n
            =0$
            .



            An easy,
            but nonelementary proof of this is this:



            $beginarray\
            ln(n)
            &=int_1^n dfracdtt\
            &<int_1^n dfracdtt^1/2\
            &=2t^1/2|_1^n\
            &lt 2sqrtn\
            textso\
            dfracln(n)n
            &<dfrac2sqrtn\
            endarray
            $



            Therefore
            $ (n^k)^1/n
            =n^k/n
            =e^k ln(n)/n
            lt e^2k/sqrtn
            to 1
            $
            .






            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function ()
              return StackExchange.using("mathjaxEditing", function ()
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              );
              );
              , "mathjax-editing");

              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "69"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );













              draft saved

              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3181802%2fwhen-to-use-the-root-test-is-this-not-a-good-situation-to-use-it%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              4












              $begingroup$

              It doesn't cause any problems, because $lim_ntoinftysqrt[n]n^4=1.$ Actually, the root test is stronger than the ratio test. Sometimes the root test limit exists, but the ratio test limit does not. However, if they both exist, then they are equal. Which is why if one limit is $1$ you shouldn't try the other, even though the root test is stronger.






              share|cite|improve this answer









              $endgroup$

















                4












                $begingroup$

                It doesn't cause any problems, because $lim_ntoinftysqrt[n]n^4=1.$ Actually, the root test is stronger than the ratio test. Sometimes the root test limit exists, but the ratio test limit does not. However, if they both exist, then they are equal. Which is why if one limit is $1$ you shouldn't try the other, even though the root test is stronger.






                share|cite|improve this answer









                $endgroup$















                  4












                  4








                  4





                  $begingroup$

                  It doesn't cause any problems, because $lim_ntoinftysqrt[n]n^4=1.$ Actually, the root test is stronger than the ratio test. Sometimes the root test limit exists, but the ratio test limit does not. However, if they both exist, then they are equal. Which is why if one limit is $1$ you shouldn't try the other, even though the root test is stronger.






                  share|cite|improve this answer









                  $endgroup$



                  It doesn't cause any problems, because $lim_ntoinftysqrt[n]n^4=1.$ Actually, the root test is stronger than the ratio test. Sometimes the root test limit exists, but the ratio test limit does not. However, if they both exist, then they are equal. Which is why if one limit is $1$ you shouldn't try the other, even though the root test is stronger.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 3 hours ago









                  MelodyMelody

                  1,07412




                  1,07412





















                      2












                      $begingroup$

                      When doing a root test,
                      powers of $n$ can be ignored
                      because,
                      for any fixed $k$,



                      $lim_n to infty (n^k)^1/n
                      =1
                      $
                      .



                      This is because
                      $ (n^k)^1/n
                      =n^k/n
                      =e^k ln(n)/n
                      $

                      and
                      $lim_n to infty fracln(n)n
                      =0$
                      .



                      An easy,
                      but nonelementary proof of this is this:



                      $beginarray\
                      ln(n)
                      &=int_1^n dfracdtt\
                      &<int_1^n dfracdtt^1/2\
                      &=2t^1/2|_1^n\
                      &lt 2sqrtn\
                      textso\
                      dfracln(n)n
                      &<dfrac2sqrtn\
                      endarray
                      $



                      Therefore
                      $ (n^k)^1/n
                      =n^k/n
                      =e^k ln(n)/n
                      lt e^2k/sqrtn
                      to 1
                      $
                      .






                      share|cite|improve this answer









                      $endgroup$

















                        2












                        $begingroup$

                        When doing a root test,
                        powers of $n$ can be ignored
                        because,
                        for any fixed $k$,



                        $lim_n to infty (n^k)^1/n
                        =1
                        $
                        .



                        This is because
                        $ (n^k)^1/n
                        =n^k/n
                        =e^k ln(n)/n
                        $

                        and
                        $lim_n to infty fracln(n)n
                        =0$
                        .



                        An easy,
                        but nonelementary proof of this is this:



                        $beginarray\
                        ln(n)
                        &=int_1^n dfracdtt\
                        &<int_1^n dfracdtt^1/2\
                        &=2t^1/2|_1^n\
                        &lt 2sqrtn\
                        textso\
                        dfracln(n)n
                        &<dfrac2sqrtn\
                        endarray
                        $



                        Therefore
                        $ (n^k)^1/n
                        =n^k/n
                        =e^k ln(n)/n
                        lt e^2k/sqrtn
                        to 1
                        $
                        .






                        share|cite|improve this answer









                        $endgroup$















                          2












                          2








                          2





                          $begingroup$

                          When doing a root test,
                          powers of $n$ can be ignored
                          because,
                          for any fixed $k$,



                          $lim_n to infty (n^k)^1/n
                          =1
                          $
                          .



                          This is because
                          $ (n^k)^1/n
                          =n^k/n
                          =e^k ln(n)/n
                          $

                          and
                          $lim_n to infty fracln(n)n
                          =0$
                          .



                          An easy,
                          but nonelementary proof of this is this:



                          $beginarray\
                          ln(n)
                          &=int_1^n dfracdtt\
                          &<int_1^n dfracdtt^1/2\
                          &=2t^1/2|_1^n\
                          &lt 2sqrtn\
                          textso\
                          dfracln(n)n
                          &<dfrac2sqrtn\
                          endarray
                          $



                          Therefore
                          $ (n^k)^1/n
                          =n^k/n
                          =e^k ln(n)/n
                          lt e^2k/sqrtn
                          to 1
                          $
                          .






                          share|cite|improve this answer









                          $endgroup$



                          When doing a root test,
                          powers of $n$ can be ignored
                          because,
                          for any fixed $k$,



                          $lim_n to infty (n^k)^1/n
                          =1
                          $
                          .



                          This is because
                          $ (n^k)^1/n
                          =n^k/n
                          =e^k ln(n)/n
                          $

                          and
                          $lim_n to infty fracln(n)n
                          =0$
                          .



                          An easy,
                          but nonelementary proof of this is this:



                          $beginarray\
                          ln(n)
                          &=int_1^n dfracdtt\
                          &<int_1^n dfracdtt^1/2\
                          &=2t^1/2|_1^n\
                          &lt 2sqrtn\
                          textso\
                          dfracln(n)n
                          &<dfrac2sqrtn\
                          endarray
                          $



                          Therefore
                          $ (n^k)^1/n
                          =n^k/n
                          =e^k ln(n)/n
                          lt e^2k/sqrtn
                          to 1
                          $
                          .







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered 3 hours ago









                          marty cohenmarty cohen

                          75.2k549130




                          75.2k549130



























                              draft saved

                              draft discarded
















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3181802%2fwhen-to-use-the-root-test-is-this-not-a-good-situation-to-use-it%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              名間水力發電廠 目录 沿革 設施 鄰近設施 註釋 外部連結 导航菜单23°50′10″N 120°42′41″E / 23.83611°N 120.71139°E / 23.83611; 120.7113923°50′10″N 120°42′41″E / 23.83611°N 120.71139°E / 23.83611; 120.71139計畫概要原始内容臺灣第一座BOT 模式開發的水力發電廠-名間水力電廠名間水力發電廠 水利署首件BOT案原始内容《小檔案》名間電廠 首座BOT水力發電廠原始内容名間電廠BOT - 經濟部水利署中區水資源局

                              Prove that NP is closed under karp reduction?Space(n) not closed under Karp reductions - what about NTime(n)?Class P is closed under rotation?Prove or disprove that $NL$ is closed under polynomial many-one reductions$mathbfNC_2$ is closed under log-space reductionOn Karp reductionwhen can I know if a class (complexity) is closed under reduction (cook/karp)Check if class $PSPACE$ is closed under polyonomially space reductionIs NPSPACE also closed under polynomial-time reduction and under log-space reduction?Prove PSPACE is closed under complement?Prove PSPACE is closed under union?

                              Is my guitar’s action too high? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Strings too stiff on a recently purchased acoustic guitar | Cort AD880CEIs the action of my guitar really high?Μy little finger is too weak to play guitarWith guitar, how long should I give my fingers to strengthen / callous?When playing a fret the guitar sounds mutedPlaying (Barre) chords up the guitar neckI think my guitar strings are wound too tight and I can't play barre chordsF barre chord on an SG guitarHow to find to the right strings of a barre chord by feel?High action on higher fret on my steel acoustic guitar