vector calculus integration identity problem The Next CEO of Stack Overflow$LaTeX$ format copy problemIs it possible to do vector calculus in Mathematica?Dipolar magnetic field lines inside a cylinderComparing unit normal definition in calculus with FrenetSerretSystemManipulating curl and div of a vector in spherical coordinatesIntegration with a matrix as the the integrandGet the vector Norm without absolute values?matrix calculus with types (similar to matrixcalculus.org)How do I verify a vector identity using Mathematica?Einstein summation convention for symbolic vector calculusVector calculus with index notation

Does higher Oxidation/ reduction potential translate to higher energy storage in battery?

Traveling with my 5 year old daughter (as the father) without the mother from Germany to Mexico

Why is the US ranked as #45 in Press Freedom ratings, despite its extremely permissive free speech laws?

How to get the last not-null value in an ordered column of a huge table?

Computationally populating tables with probability data

Is French Guiana a (hard) EU border?

Airplane gently rocking its wings during whole flight

Is dried pee considered dirt?

What is the difference between "hamstring tendon" and "common hamstring tendon"?

Reshaping json / reparing json inside shell script (remove trailing comma)

Is it ever safe to open a suspicious HTML file (e.g. email attachment)?

Point distance program written without a framework

Does Germany produce more waste than the US?

Spaces in which all closed sets are regular closed

Is it okay to majorly distort historical facts while writing a fiction story?

Calculate the Mean mean of two numbers

What does "shotgun unity" refer to here in this sentence?

Is there a way to save my career from absolute disaster?

Why do we say 'Un seul M' and not 'Une seule M' even though M is a "consonne"

Can this note be analyzed as a non-chord tone?

In the "Harry Potter and the Order of the Phoenix" video game, what potion is used to sabotage Umbridge's speakers?

Won the lottery - how do I keep the money?

The Ultimate Number Sequence Puzzle

Aggressive Under-Indexing and no data for missing index



vector calculus integration identity problem



The Next CEO of Stack Overflow$LaTeX$ format copy problemIs it possible to do vector calculus in Mathematica?Dipolar magnetic field lines inside a cylinderComparing unit normal definition in calculus with FrenetSerretSystemManipulating curl and div of a vector in spherical coordinatesIntegration with a matrix as the the integrandGet the vector Norm without absolute values?matrix calculus with types (similar to matrixcalculus.org)How do I verify a vector identity using Mathematica?Einstein summation convention for symbolic vector calculusVector calculus with index notation










2












$begingroup$


This is a follow up from another post . I was using the integration symbol available in the Basic Math Assistance available in Wolfram Mathematica.



I am new to vector calculus operations. There is a known identity found in the textbooks



$$int _4 pi hats (hatscdot A) d omega=frac4 pi3A$$



I have no idea how to do this type of integration. This is what I tried but return a dissaster



Integrate[s*(Dot[s, A]), s, 0, 4 [Pi]]


Also , without success



Integrate[Sin[[Theta]], 
Cos[[Theta]]*(Dot[Sin[[Theta]], Cos[[Theta]], a1,
a2]), [Theta], 0, 4 [Pi]]


It is obviosu that I am doing something fundamentally not correct. I go to WM documentation on Vector Calculus but does not offer much substance or examples. How will you enter the equation above in order to return the identity in the right?



UPDATE 1



In respond to comment, here is a copy of the text. This is from page 10 Optical-Thermal Response of Laser-Irradiated Tissue ISBN 9789048188307



$$w$$ is the surface area of a sphere in solid angle steradian. s is the directional vector of a pencil of radiation located inside the sphere



enter image description here










share|improve this question











$endgroup$











  • $begingroup$
    What are $s$ and $omega$ supposed to be? It might be helpful if you can give an example of the textbook with the formula.
    $endgroup$
    – J. M. is slightly pensive
    2 hours ago






  • 2




    $begingroup$
    Here's my guess: With[s = x, y, z, A = A1, A2, A3, Integrate[s (s.A), s [Element] Sphere[]] ] --- or this: With[s = x, y, z, A = A1, A2, A3, Integrate[s (s.A), s [Element] Sphere[]] == 4 Pi/3 A ]
    $endgroup$
    – Michael E2
    2 hours ago











  • $begingroup$
    @Michael, yes, that does seem to be it. This is why people should always define what their variables mean in their formulae.
    $endgroup$
    – J. M. is slightly pensive
    1 hour ago










  • $begingroup$
    @Michael E2 please post it as an answear for upvote
    $endgroup$
    – Jose Enrique Calderon
    1 hour ago







  • 1




    $begingroup$
    I've never seen this author's notation. My guess is that $int_4picdots$ means the integral over the sphere of measure $4pi$, i.e., the unit sphere.
    $endgroup$
    – Michael E2
    1 hour ago
















2












$begingroup$


This is a follow up from another post . I was using the integration symbol available in the Basic Math Assistance available in Wolfram Mathematica.



I am new to vector calculus operations. There is a known identity found in the textbooks



$$int _4 pi hats (hatscdot A) d omega=frac4 pi3A$$



I have no idea how to do this type of integration. This is what I tried but return a dissaster



Integrate[s*(Dot[s, A]), s, 0, 4 [Pi]]


Also , without success



Integrate[Sin[[Theta]], 
Cos[[Theta]]*(Dot[Sin[[Theta]], Cos[[Theta]], a1,
a2]), [Theta], 0, 4 [Pi]]


It is obviosu that I am doing something fundamentally not correct. I go to WM documentation on Vector Calculus but does not offer much substance or examples. How will you enter the equation above in order to return the identity in the right?



UPDATE 1



In respond to comment, here is a copy of the text. This is from page 10 Optical-Thermal Response of Laser-Irradiated Tissue ISBN 9789048188307



$$w$$ is the surface area of a sphere in solid angle steradian. s is the directional vector of a pencil of radiation located inside the sphere



enter image description here










share|improve this question











$endgroup$











  • $begingroup$
    What are $s$ and $omega$ supposed to be? It might be helpful if you can give an example of the textbook with the formula.
    $endgroup$
    – J. M. is slightly pensive
    2 hours ago






  • 2




    $begingroup$
    Here's my guess: With[s = x, y, z, A = A1, A2, A3, Integrate[s (s.A), s [Element] Sphere[]] ] --- or this: With[s = x, y, z, A = A1, A2, A3, Integrate[s (s.A), s [Element] Sphere[]] == 4 Pi/3 A ]
    $endgroup$
    – Michael E2
    2 hours ago











  • $begingroup$
    @Michael, yes, that does seem to be it. This is why people should always define what their variables mean in their formulae.
    $endgroup$
    – J. M. is slightly pensive
    1 hour ago










  • $begingroup$
    @Michael E2 please post it as an answear for upvote
    $endgroup$
    – Jose Enrique Calderon
    1 hour ago







  • 1




    $begingroup$
    I've never seen this author's notation. My guess is that $int_4picdots$ means the integral over the sphere of measure $4pi$, i.e., the unit sphere.
    $endgroup$
    – Michael E2
    1 hour ago














2












2








2





$begingroup$


This is a follow up from another post . I was using the integration symbol available in the Basic Math Assistance available in Wolfram Mathematica.



I am new to vector calculus operations. There is a known identity found in the textbooks



$$int _4 pi hats (hatscdot A) d omega=frac4 pi3A$$



I have no idea how to do this type of integration. This is what I tried but return a dissaster



Integrate[s*(Dot[s, A]), s, 0, 4 [Pi]]


Also , without success



Integrate[Sin[[Theta]], 
Cos[[Theta]]*(Dot[Sin[[Theta]], Cos[[Theta]], a1,
a2]), [Theta], 0, 4 [Pi]]


It is obviosu that I am doing something fundamentally not correct. I go to WM documentation on Vector Calculus but does not offer much substance or examples. How will you enter the equation above in order to return the identity in the right?



UPDATE 1



In respond to comment, here is a copy of the text. This is from page 10 Optical-Thermal Response of Laser-Irradiated Tissue ISBN 9789048188307



$$w$$ is the surface area of a sphere in solid angle steradian. s is the directional vector of a pencil of radiation located inside the sphere



enter image description here










share|improve this question











$endgroup$




This is a follow up from another post . I was using the integration symbol available in the Basic Math Assistance available in Wolfram Mathematica.



I am new to vector calculus operations. There is a known identity found in the textbooks



$$int _4 pi hats (hatscdot A) d omega=frac4 pi3A$$



I have no idea how to do this type of integration. This is what I tried but return a dissaster



Integrate[s*(Dot[s, A]), s, 0, 4 [Pi]]


Also , without success



Integrate[Sin[[Theta]], 
Cos[[Theta]]*(Dot[Sin[[Theta]], Cos[[Theta]], a1,
a2]), [Theta], 0, 4 [Pi]]


It is obviosu that I am doing something fundamentally not correct. I go to WM documentation on Vector Calculus but does not offer much substance or examples. How will you enter the equation above in order to return the identity in the right?



UPDATE 1



In respond to comment, here is a copy of the text. This is from page 10 Optical-Thermal Response of Laser-Irradiated Tissue ISBN 9789048188307



$$w$$ is the surface area of a sphere in solid angle steradian. s is the directional vector of a pencil of radiation located inside the sphere



enter image description here







vector-calculus






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited 1 hour ago









J. M. is slightly pensive

98.8k10311467




98.8k10311467










asked 2 hours ago









Jose Enrique CalderonJose Enrique Calderon

1,058718




1,058718











  • $begingroup$
    What are $s$ and $omega$ supposed to be? It might be helpful if you can give an example of the textbook with the formula.
    $endgroup$
    – J. M. is slightly pensive
    2 hours ago






  • 2




    $begingroup$
    Here's my guess: With[s = x, y, z, A = A1, A2, A3, Integrate[s (s.A), s [Element] Sphere[]] ] --- or this: With[s = x, y, z, A = A1, A2, A3, Integrate[s (s.A), s [Element] Sphere[]] == 4 Pi/3 A ]
    $endgroup$
    – Michael E2
    2 hours ago











  • $begingroup$
    @Michael, yes, that does seem to be it. This is why people should always define what their variables mean in their formulae.
    $endgroup$
    – J. M. is slightly pensive
    1 hour ago










  • $begingroup$
    @Michael E2 please post it as an answear for upvote
    $endgroup$
    – Jose Enrique Calderon
    1 hour ago







  • 1




    $begingroup$
    I've never seen this author's notation. My guess is that $int_4picdots$ means the integral over the sphere of measure $4pi$, i.e., the unit sphere.
    $endgroup$
    – Michael E2
    1 hour ago

















  • $begingroup$
    What are $s$ and $omega$ supposed to be? It might be helpful if you can give an example of the textbook with the formula.
    $endgroup$
    – J. M. is slightly pensive
    2 hours ago






  • 2




    $begingroup$
    Here's my guess: With[s = x, y, z, A = A1, A2, A3, Integrate[s (s.A), s [Element] Sphere[]] ] --- or this: With[s = x, y, z, A = A1, A2, A3, Integrate[s (s.A), s [Element] Sphere[]] == 4 Pi/3 A ]
    $endgroup$
    – Michael E2
    2 hours ago











  • $begingroup$
    @Michael, yes, that does seem to be it. This is why people should always define what their variables mean in their formulae.
    $endgroup$
    – J. M. is slightly pensive
    1 hour ago










  • $begingroup$
    @Michael E2 please post it as an answear for upvote
    $endgroup$
    – Jose Enrique Calderon
    1 hour ago







  • 1




    $begingroup$
    I've never seen this author's notation. My guess is that $int_4picdots$ means the integral over the sphere of measure $4pi$, i.e., the unit sphere.
    $endgroup$
    – Michael E2
    1 hour ago
















$begingroup$
What are $s$ and $omega$ supposed to be? It might be helpful if you can give an example of the textbook with the formula.
$endgroup$
– J. M. is slightly pensive
2 hours ago




$begingroup$
What are $s$ and $omega$ supposed to be? It might be helpful if you can give an example of the textbook with the formula.
$endgroup$
– J. M. is slightly pensive
2 hours ago




2




2




$begingroup$
Here's my guess: With[s = x, y, z, A = A1, A2, A3, Integrate[s (s.A), s [Element] Sphere[]] ] --- or this: With[s = x, y, z, A = A1, A2, A3, Integrate[s (s.A), s [Element] Sphere[]] == 4 Pi/3 A ]
$endgroup$
– Michael E2
2 hours ago





$begingroup$
Here's my guess: With[s = x, y, z, A = A1, A2, A3, Integrate[s (s.A), s [Element] Sphere[]] ] --- or this: With[s = x, y, z, A = A1, A2, A3, Integrate[s (s.A), s [Element] Sphere[]] == 4 Pi/3 A ]
$endgroup$
– Michael E2
2 hours ago













$begingroup$
@Michael, yes, that does seem to be it. This is why people should always define what their variables mean in their formulae.
$endgroup$
– J. M. is slightly pensive
1 hour ago




$begingroup$
@Michael, yes, that does seem to be it. This is why people should always define what their variables mean in their formulae.
$endgroup$
– J. M. is slightly pensive
1 hour ago












$begingroup$
@Michael E2 please post it as an answear for upvote
$endgroup$
– Jose Enrique Calderon
1 hour ago





$begingroup$
@Michael E2 please post it as an answear for upvote
$endgroup$
– Jose Enrique Calderon
1 hour ago





1




1




$begingroup$
I've never seen this author's notation. My guess is that $int_4picdots$ means the integral over the sphere of measure $4pi$, i.e., the unit sphere.
$endgroup$
– Michael E2
1 hour ago





$begingroup$
I've never seen this author's notation. My guess is that $int_4picdots$ means the integral over the sphere of measure $4pi$, i.e., the unit sphere.
$endgroup$
– Michael E2
1 hour ago











1 Answer
1






active

oldest

votes


















2












$begingroup$

Here's my guess:



With[s = x, y, z,
A = A1, A2, A3, Integrate[s (s.A), s ∈ Sphere[]] ]
(* (4 A1 π)/3, (4 A2 π)/3, (4 A3 π)/3 *)


--- or this:



With[s = x, y, z, A = A1, A2, A3,
Integrate[s (s.A), s ∈ Sphere[]] == 4 Pi/3 A ]
(* True *)





share|improve this answer









$endgroup$












  • $begingroup$
    Why it simply does not work with limits of integration s,0,4Pi
    $endgroup$
    – Jose Enrique Calderon
    1 hour ago






  • 1




    $begingroup$
    @Jose, the author was being lazy with the limits (basically, shorter than saying "integrate over the whole area of the unit sphere"). It is fine to be lazy in mathematics, but not so much when programming.
    $endgroup$
    – J. M. is slightly pensive
    1 hour ago











  • $begingroup$
    @J.M. is slightly pensive Ok.. but why Mathematica function proposed in the answear does not work with With[s = x, y, z, A = A1, A2, A3, Integrate[s (s.A), s,0,4Pi] ]
    $endgroup$
    – Jose Enrique Calderon
    1 hour ago







  • 1




    $begingroup$
    @Jose The syntax s, 0, 4 Pi already implies one-dimensional s from Mathematica's view, while in the "abuse of notation" used in your reference, $hats$ is implied to be a vector.
    $endgroup$
    – J. M. is slightly pensive
    1 hour ago







  • 1




    $begingroup$
    @Jose: the easiest way is that you have to switch to spherical coordinates if you need to integrate across arbitrary angles. If you insist on keeping yourself to regions, you can use RegionIntersection[] with Sphere[] and either ConicHullRegion[] or HalfSpace[].
    $endgroup$
    – J. M. is slightly pensive
    1 hour ago











Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "387"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f194347%2fvector-calculus-integration-identity-problem%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









2












$begingroup$

Here's my guess:



With[s = x, y, z,
A = A1, A2, A3, Integrate[s (s.A), s ∈ Sphere[]] ]
(* (4 A1 π)/3, (4 A2 π)/3, (4 A3 π)/3 *)


--- or this:



With[s = x, y, z, A = A1, A2, A3,
Integrate[s (s.A), s ∈ Sphere[]] == 4 Pi/3 A ]
(* True *)





share|improve this answer









$endgroup$












  • $begingroup$
    Why it simply does not work with limits of integration s,0,4Pi
    $endgroup$
    – Jose Enrique Calderon
    1 hour ago






  • 1




    $begingroup$
    @Jose, the author was being lazy with the limits (basically, shorter than saying "integrate over the whole area of the unit sphere"). It is fine to be lazy in mathematics, but not so much when programming.
    $endgroup$
    – J. M. is slightly pensive
    1 hour ago











  • $begingroup$
    @J.M. is slightly pensive Ok.. but why Mathematica function proposed in the answear does not work with With[s = x, y, z, A = A1, A2, A3, Integrate[s (s.A), s,0,4Pi] ]
    $endgroup$
    – Jose Enrique Calderon
    1 hour ago







  • 1




    $begingroup$
    @Jose The syntax s, 0, 4 Pi already implies one-dimensional s from Mathematica's view, while in the "abuse of notation" used in your reference, $hats$ is implied to be a vector.
    $endgroup$
    – J. M. is slightly pensive
    1 hour ago







  • 1




    $begingroup$
    @Jose: the easiest way is that you have to switch to spherical coordinates if you need to integrate across arbitrary angles. If you insist on keeping yourself to regions, you can use RegionIntersection[] with Sphere[] and either ConicHullRegion[] or HalfSpace[].
    $endgroup$
    – J. M. is slightly pensive
    1 hour ago















2












$begingroup$

Here's my guess:



With[s = x, y, z,
A = A1, A2, A3, Integrate[s (s.A), s ∈ Sphere[]] ]
(* (4 A1 π)/3, (4 A2 π)/3, (4 A3 π)/3 *)


--- or this:



With[s = x, y, z, A = A1, A2, A3,
Integrate[s (s.A), s ∈ Sphere[]] == 4 Pi/3 A ]
(* True *)





share|improve this answer









$endgroup$












  • $begingroup$
    Why it simply does not work with limits of integration s,0,4Pi
    $endgroup$
    – Jose Enrique Calderon
    1 hour ago






  • 1




    $begingroup$
    @Jose, the author was being lazy with the limits (basically, shorter than saying "integrate over the whole area of the unit sphere"). It is fine to be lazy in mathematics, but not so much when programming.
    $endgroup$
    – J. M. is slightly pensive
    1 hour ago











  • $begingroup$
    @J.M. is slightly pensive Ok.. but why Mathematica function proposed in the answear does not work with With[s = x, y, z, A = A1, A2, A3, Integrate[s (s.A), s,0,4Pi] ]
    $endgroup$
    – Jose Enrique Calderon
    1 hour ago







  • 1




    $begingroup$
    @Jose The syntax s, 0, 4 Pi already implies one-dimensional s from Mathematica's view, while in the "abuse of notation" used in your reference, $hats$ is implied to be a vector.
    $endgroup$
    – J. M. is slightly pensive
    1 hour ago







  • 1




    $begingroup$
    @Jose: the easiest way is that you have to switch to spherical coordinates if you need to integrate across arbitrary angles. If you insist on keeping yourself to regions, you can use RegionIntersection[] with Sphere[] and either ConicHullRegion[] or HalfSpace[].
    $endgroup$
    – J. M. is slightly pensive
    1 hour ago













2












2








2





$begingroup$

Here's my guess:



With[s = x, y, z,
A = A1, A2, A3, Integrate[s (s.A), s ∈ Sphere[]] ]
(* (4 A1 π)/3, (4 A2 π)/3, (4 A3 π)/3 *)


--- or this:



With[s = x, y, z, A = A1, A2, A3,
Integrate[s (s.A), s ∈ Sphere[]] == 4 Pi/3 A ]
(* True *)





share|improve this answer









$endgroup$



Here's my guess:



With[s = x, y, z,
A = A1, A2, A3, Integrate[s (s.A), s ∈ Sphere[]] ]
(* (4 A1 π)/3, (4 A2 π)/3, (4 A3 π)/3 *)


--- or this:



With[s = x, y, z, A = A1, A2, A3,
Integrate[s (s.A), s ∈ Sphere[]] == 4 Pi/3 A ]
(* True *)






share|improve this answer












share|improve this answer



share|improve this answer










answered 1 hour ago









Michael E2Michael E2

150k12203482




150k12203482











  • $begingroup$
    Why it simply does not work with limits of integration s,0,4Pi
    $endgroup$
    – Jose Enrique Calderon
    1 hour ago






  • 1




    $begingroup$
    @Jose, the author was being lazy with the limits (basically, shorter than saying "integrate over the whole area of the unit sphere"). It is fine to be lazy in mathematics, but not so much when programming.
    $endgroup$
    – J. M. is slightly pensive
    1 hour ago











  • $begingroup$
    @J.M. is slightly pensive Ok.. but why Mathematica function proposed in the answear does not work with With[s = x, y, z, A = A1, A2, A3, Integrate[s (s.A), s,0,4Pi] ]
    $endgroup$
    – Jose Enrique Calderon
    1 hour ago







  • 1




    $begingroup$
    @Jose The syntax s, 0, 4 Pi already implies one-dimensional s from Mathematica's view, while in the "abuse of notation" used in your reference, $hats$ is implied to be a vector.
    $endgroup$
    – J. M. is slightly pensive
    1 hour ago







  • 1




    $begingroup$
    @Jose: the easiest way is that you have to switch to spherical coordinates if you need to integrate across arbitrary angles. If you insist on keeping yourself to regions, you can use RegionIntersection[] with Sphere[] and either ConicHullRegion[] or HalfSpace[].
    $endgroup$
    – J. M. is slightly pensive
    1 hour ago
















  • $begingroup$
    Why it simply does not work with limits of integration s,0,4Pi
    $endgroup$
    – Jose Enrique Calderon
    1 hour ago






  • 1




    $begingroup$
    @Jose, the author was being lazy with the limits (basically, shorter than saying "integrate over the whole area of the unit sphere"). It is fine to be lazy in mathematics, but not so much when programming.
    $endgroup$
    – J. M. is slightly pensive
    1 hour ago











  • $begingroup$
    @J.M. is slightly pensive Ok.. but why Mathematica function proposed in the answear does not work with With[s = x, y, z, A = A1, A2, A3, Integrate[s (s.A), s,0,4Pi] ]
    $endgroup$
    – Jose Enrique Calderon
    1 hour ago







  • 1




    $begingroup$
    @Jose The syntax s, 0, 4 Pi already implies one-dimensional s from Mathematica's view, while in the "abuse of notation" used in your reference, $hats$ is implied to be a vector.
    $endgroup$
    – J. M. is slightly pensive
    1 hour ago







  • 1




    $begingroup$
    @Jose: the easiest way is that you have to switch to spherical coordinates if you need to integrate across arbitrary angles. If you insist on keeping yourself to regions, you can use RegionIntersection[] with Sphere[] and either ConicHullRegion[] or HalfSpace[].
    $endgroup$
    – J. M. is slightly pensive
    1 hour ago















$begingroup$
Why it simply does not work with limits of integration s,0,4Pi
$endgroup$
– Jose Enrique Calderon
1 hour ago




$begingroup$
Why it simply does not work with limits of integration s,0,4Pi
$endgroup$
– Jose Enrique Calderon
1 hour ago




1




1




$begingroup$
@Jose, the author was being lazy with the limits (basically, shorter than saying "integrate over the whole area of the unit sphere"). It is fine to be lazy in mathematics, but not so much when programming.
$endgroup$
– J. M. is slightly pensive
1 hour ago





$begingroup$
@Jose, the author was being lazy with the limits (basically, shorter than saying "integrate over the whole area of the unit sphere"). It is fine to be lazy in mathematics, but not so much when programming.
$endgroup$
– J. M. is slightly pensive
1 hour ago













$begingroup$
@J.M. is slightly pensive Ok.. but why Mathematica function proposed in the answear does not work with With[s = x, y, z, A = A1, A2, A3, Integrate[s (s.A), s,0,4Pi] ]
$endgroup$
– Jose Enrique Calderon
1 hour ago





$begingroup$
@J.M. is slightly pensive Ok.. but why Mathematica function proposed in the answear does not work with With[s = x, y, z, A = A1, A2, A3, Integrate[s (s.A), s,0,4Pi] ]
$endgroup$
– Jose Enrique Calderon
1 hour ago





1




1




$begingroup$
@Jose The syntax s, 0, 4 Pi already implies one-dimensional s from Mathematica's view, while in the "abuse of notation" used in your reference, $hats$ is implied to be a vector.
$endgroup$
– J. M. is slightly pensive
1 hour ago





$begingroup$
@Jose The syntax s, 0, 4 Pi already implies one-dimensional s from Mathematica's view, while in the "abuse of notation" used in your reference, $hats$ is implied to be a vector.
$endgroup$
– J. M. is slightly pensive
1 hour ago





1




1




$begingroup$
@Jose: the easiest way is that you have to switch to spherical coordinates if you need to integrate across arbitrary angles. If you insist on keeping yourself to regions, you can use RegionIntersection[] with Sphere[] and either ConicHullRegion[] or HalfSpace[].
$endgroup$
– J. M. is slightly pensive
1 hour ago




$begingroup$
@Jose: the easiest way is that you have to switch to spherical coordinates if you need to integrate across arbitrary angles. If you insist on keeping yourself to regions, you can use RegionIntersection[] with Sphere[] and either ConicHullRegion[] or HalfSpace[].
$endgroup$
– J. M. is slightly pensive
1 hour ago

















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematica Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f194347%2fvector-calculus-integration-identity-problem%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

名間水力發電廠 目录 沿革 設施 鄰近設施 註釋 外部連結 导航菜单23°50′10″N 120°42′41″E / 23.83611°N 120.71139°E / 23.83611; 120.7113923°50′10″N 120°42′41″E / 23.83611°N 120.71139°E / 23.83611; 120.71139計畫概要原始内容臺灣第一座BOT 模式開發的水力發電廠-名間水力電廠名間水力發電廠 水利署首件BOT案原始内容《小檔案》名間電廠 首座BOT水力發電廠原始内容名間電廠BOT - 經濟部水利署中區水資源局

Prove that NP is closed under karp reduction?Space(n) not closed under Karp reductions - what about NTime(n)?Class P is closed under rotation?Prove or disprove that $NL$ is closed under polynomial many-one reductions$mathbfNC_2$ is closed under log-space reductionOn Karp reductionwhen can I know if a class (complexity) is closed under reduction (cook/karp)Check if class $PSPACE$ is closed under polyonomially space reductionIs NPSPACE also closed under polynomial-time reduction and under log-space reduction?Prove PSPACE is closed under complement?Prove PSPACE is closed under union?

Is my guitar’s action too high? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Strings too stiff on a recently purchased acoustic guitar | Cort AD880CEIs the action of my guitar really high?Μy little finger is too weak to play guitarWith guitar, how long should I give my fingers to strengthen / callous?When playing a fret the guitar sounds mutedPlaying (Barre) chords up the guitar neckI think my guitar strings are wound too tight and I can't play barre chordsF barre chord on an SG guitarHow to find to the right strings of a barre chord by feel?High action on higher fret on my steel acoustic guitar