Determine whether or not the following series converge. Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)The Series( $sum_1^+ inftyfrac1n! + n$ convergence or divergence?Should I use the comparison test for the following series?Convergence for $sum _n=1^infty :fracsqrt[4]n^2-1sqrtn^4-1$Prove whether the series convergesDetermine whether or not each of the following series is convergentDetermine whether or not the following series are convergent $sum_n=1^infty nsin(frac1n)$Determine whether or not the following series is convergent $sum_n=1^infty frac1n^n$For what values of $z$ does the series $sum_n=0^infty frac1n^2 + z^2$ converge?Determine whether this series converges or not.Determine whether the series converges or diverges.
Area of a 2D convex hull
Blender game recording at the wrong time
How is simplicity better than precision and clarity in prose?
Passing functions in C++
What is the electric potential inside a point charge?
Is there a documented rationale why the House Ways and Means chairman can demand tax info?
Active filter with series inductor and resistor - do these exist?
Classification of bundles, Postnikov towers, obstruction theory, local coefficients
Is there a service that would inform me whenever a new direct route is scheduled from a given airport?
What would be Julian Assange's expected punishment, on the current English criminal law?
What LEGO pieces have "real-world" functionality?
3 doors, three guards, one stone
Cauchy Sequence Characterized only By Directly Neighbouring Sequence Members
How can I protect witches in combat who wear limited clothing?
If I can make up priors, why can't I make up posteriors?
Did the new image of black hole confirm the general theory of relativity?
Replacing HDD with SSD; what about non-APFS/APFS?
What do I do if technical issues prevent me from filing my return on time?
Estimate capacitor parameters
Determine whether f is a function, an injection, a surjection
What loss function to use when labels are probabilities?
Need a suitable toxic chemical for a murder plot in my novel
Why is "Captain Marvel" translated as male in Portugal?
Unable to start mainnet node docker container
Determine whether or not the following series converge.
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)The Series( $sum_1^+ inftyfrac1n! + n$ convergence or divergence?Should I use the comparison test for the following series?Convergence for $sum _n=1^infty :fracsqrt[4]n^2-1sqrtn^4-1$Prove whether the series convergesDetermine whether or not each of the following series is convergentDetermine whether or not the following series are convergent $sum_n=1^infty nsin(frac1n)$Determine whether or not the following series is convergent $sum_n=1^infty frac1n^n$For what values of $z$ does the series $sum_n=0^infty frac1n^2 + z^2$ converge?Determine whether this series converges or not.Determine whether the series converges or diverges.
$begingroup$
$$sum_k=1^inftyleft(frac kk+1right)^k^2$$
Determine whether or not the following series converge.
I am not sure what test to use. I am pretty sure I am unable to use ratio test. Maybe comparison or Kummer, or Raabe. However I am not sure how to start it.
sequences-and-series convergence
$endgroup$
add a comment |
$begingroup$
$$sum_k=1^inftyleft(frac kk+1right)^k^2$$
Determine whether or not the following series converge.
I am not sure what test to use. I am pretty sure I am unable to use ratio test. Maybe comparison or Kummer, or Raabe. However I am not sure how to start it.
sequences-and-series convergence
$endgroup$
$begingroup$
You have an exponent with $k$. Your instinct should be to remove it with the root test.
$endgroup$
– Simply Beautiful Art
3 hours ago
$begingroup$
Since its squared, do I take the k^2 root
$endgroup$
– MD3
3 hours ago
$begingroup$
Does the root test say you take the $k^2$-th root?
$endgroup$
– Simply Beautiful Art
3 hours ago
1
$begingroup$
For $kge 1$, we have$$left(frackk+1right)^k^2le e^-k/2$$
$endgroup$
– Mark Viola
3 hours ago
add a comment |
$begingroup$
$$sum_k=1^inftyleft(frac kk+1right)^k^2$$
Determine whether or not the following series converge.
I am not sure what test to use. I am pretty sure I am unable to use ratio test. Maybe comparison or Kummer, or Raabe. However I am not sure how to start it.
sequences-and-series convergence
$endgroup$
$$sum_k=1^inftyleft(frac kk+1right)^k^2$$
Determine whether or not the following series converge.
I am not sure what test to use. I am pretty sure I am unable to use ratio test. Maybe comparison or Kummer, or Raabe. However I am not sure how to start it.
sequences-and-series convergence
sequences-and-series convergence
edited 3 hours ago
Simply Beautiful Art
50.9k580186
50.9k580186
asked 3 hours ago
MD3MD3
462
462
$begingroup$
You have an exponent with $k$. Your instinct should be to remove it with the root test.
$endgroup$
– Simply Beautiful Art
3 hours ago
$begingroup$
Since its squared, do I take the k^2 root
$endgroup$
– MD3
3 hours ago
$begingroup$
Does the root test say you take the $k^2$-th root?
$endgroup$
– Simply Beautiful Art
3 hours ago
1
$begingroup$
For $kge 1$, we have$$left(frackk+1right)^k^2le e^-k/2$$
$endgroup$
– Mark Viola
3 hours ago
add a comment |
$begingroup$
You have an exponent with $k$. Your instinct should be to remove it with the root test.
$endgroup$
– Simply Beautiful Art
3 hours ago
$begingroup$
Since its squared, do I take the k^2 root
$endgroup$
– MD3
3 hours ago
$begingroup$
Does the root test say you take the $k^2$-th root?
$endgroup$
– Simply Beautiful Art
3 hours ago
1
$begingroup$
For $kge 1$, we have$$left(frackk+1right)^k^2le e^-k/2$$
$endgroup$
– Mark Viola
3 hours ago
$begingroup$
You have an exponent with $k$. Your instinct should be to remove it with the root test.
$endgroup$
– Simply Beautiful Art
3 hours ago
$begingroup$
You have an exponent with $k$. Your instinct should be to remove it with the root test.
$endgroup$
– Simply Beautiful Art
3 hours ago
$begingroup$
Since its squared, do I take the k^2 root
$endgroup$
– MD3
3 hours ago
$begingroup$
Since its squared, do I take the k^2 root
$endgroup$
– MD3
3 hours ago
$begingroup$
Does the root test say you take the $k^2$-th root?
$endgroup$
– Simply Beautiful Art
3 hours ago
$begingroup$
Does the root test say you take the $k^2$-th root?
$endgroup$
– Simply Beautiful Art
3 hours ago
1
1
$begingroup$
For $kge 1$, we have$$left(frackk+1right)^k^2le e^-k/2$$
$endgroup$
– Mark Viola
3 hours ago
$begingroup$
For $kge 1$, we have$$left(frackk+1right)^k^2le e^-k/2$$
$endgroup$
– Mark Viola
3 hours ago
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
By Root test, $$limsup_n to infty sqrt[n]left(fracnn+1right)^n^2=limsup_n to infty left(fracnn+1right)^n=limsup_n to infty left(1+frac1nright)^-n=frac1e<1$$
So your series converges!
$endgroup$
$begingroup$
How did you know to take the supremum
$endgroup$
– MD3
3 hours ago
$begingroup$
See the wiki link!
$endgroup$
– Chinnapparaj R
3 hours ago
add a comment |
$begingroup$
Hint: $$left( frackk+1 right)^k sim e^-1 $$
$endgroup$
add a comment |
$begingroup$
$$a_k=left(frac kk+1right)^k^2implies log(a_k)=k^2 logleft(frac kk+1right)$$
$$log(a_k+1)-log(a_k)=(k+1)^2 log left(frack+1k+2right)-k^2 log left(frackk+1right)$$ Using Taylor expansions for large $k$
$$log(a_k+1)-log(a_k)=-1+frac13 k^2+Oleft(frac1k^3right)$$
$$frac a_k+1a_k=e^log(a_k+1)-log(a_k)=frac 1 e left(1+frac13 k^2+Oleft(frac1k^3right)right)to frac 1 e $$
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3188224%2fdetermine-whether-or-not-the-following-series-converge%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
By Root test, $$limsup_n to infty sqrt[n]left(fracnn+1right)^n^2=limsup_n to infty left(fracnn+1right)^n=limsup_n to infty left(1+frac1nright)^-n=frac1e<1$$
So your series converges!
$endgroup$
$begingroup$
How did you know to take the supremum
$endgroup$
– MD3
3 hours ago
$begingroup$
See the wiki link!
$endgroup$
– Chinnapparaj R
3 hours ago
add a comment |
$begingroup$
By Root test, $$limsup_n to infty sqrt[n]left(fracnn+1right)^n^2=limsup_n to infty left(fracnn+1right)^n=limsup_n to infty left(1+frac1nright)^-n=frac1e<1$$
So your series converges!
$endgroup$
$begingroup$
How did you know to take the supremum
$endgroup$
– MD3
3 hours ago
$begingroup$
See the wiki link!
$endgroup$
– Chinnapparaj R
3 hours ago
add a comment |
$begingroup$
By Root test, $$limsup_n to infty sqrt[n]left(fracnn+1right)^n^2=limsup_n to infty left(fracnn+1right)^n=limsup_n to infty left(1+frac1nright)^-n=frac1e<1$$
So your series converges!
$endgroup$
By Root test, $$limsup_n to infty sqrt[n]left(fracnn+1right)^n^2=limsup_n to infty left(fracnn+1right)^n=limsup_n to infty left(1+frac1nright)^-n=frac1e<1$$
So your series converges!
edited 3 hours ago
answered 3 hours ago
Chinnapparaj RChinnapparaj R
6,54021029
6,54021029
$begingroup$
How did you know to take the supremum
$endgroup$
– MD3
3 hours ago
$begingroup$
See the wiki link!
$endgroup$
– Chinnapparaj R
3 hours ago
add a comment |
$begingroup$
How did you know to take the supremum
$endgroup$
– MD3
3 hours ago
$begingroup$
See the wiki link!
$endgroup$
– Chinnapparaj R
3 hours ago
$begingroup$
How did you know to take the supremum
$endgroup$
– MD3
3 hours ago
$begingroup$
How did you know to take the supremum
$endgroup$
– MD3
3 hours ago
$begingroup$
See the wiki link!
$endgroup$
– Chinnapparaj R
3 hours ago
$begingroup$
See the wiki link!
$endgroup$
– Chinnapparaj R
3 hours ago
add a comment |
$begingroup$
Hint: $$left( frackk+1 right)^k sim e^-1 $$
$endgroup$
add a comment |
$begingroup$
Hint: $$left( frackk+1 right)^k sim e^-1 $$
$endgroup$
add a comment |
$begingroup$
Hint: $$left( frackk+1 right)^k sim e^-1 $$
$endgroup$
Hint: $$left( frackk+1 right)^k sim e^-1 $$
answered 3 hours ago
Robert IsraelRobert Israel
331k23221478
331k23221478
add a comment |
add a comment |
$begingroup$
$$a_k=left(frac kk+1right)^k^2implies log(a_k)=k^2 logleft(frac kk+1right)$$
$$log(a_k+1)-log(a_k)=(k+1)^2 log left(frack+1k+2right)-k^2 log left(frackk+1right)$$ Using Taylor expansions for large $k$
$$log(a_k+1)-log(a_k)=-1+frac13 k^2+Oleft(frac1k^3right)$$
$$frac a_k+1a_k=e^log(a_k+1)-log(a_k)=frac 1 e left(1+frac13 k^2+Oleft(frac1k^3right)right)to frac 1 e $$
$endgroup$
add a comment |
$begingroup$
$$a_k=left(frac kk+1right)^k^2implies log(a_k)=k^2 logleft(frac kk+1right)$$
$$log(a_k+1)-log(a_k)=(k+1)^2 log left(frack+1k+2right)-k^2 log left(frackk+1right)$$ Using Taylor expansions for large $k$
$$log(a_k+1)-log(a_k)=-1+frac13 k^2+Oleft(frac1k^3right)$$
$$frac a_k+1a_k=e^log(a_k+1)-log(a_k)=frac 1 e left(1+frac13 k^2+Oleft(frac1k^3right)right)to frac 1 e $$
$endgroup$
add a comment |
$begingroup$
$$a_k=left(frac kk+1right)^k^2implies log(a_k)=k^2 logleft(frac kk+1right)$$
$$log(a_k+1)-log(a_k)=(k+1)^2 log left(frack+1k+2right)-k^2 log left(frackk+1right)$$ Using Taylor expansions for large $k$
$$log(a_k+1)-log(a_k)=-1+frac13 k^2+Oleft(frac1k^3right)$$
$$frac a_k+1a_k=e^log(a_k+1)-log(a_k)=frac 1 e left(1+frac13 k^2+Oleft(frac1k^3right)right)to frac 1 e $$
$endgroup$
$$a_k=left(frac kk+1right)^k^2implies log(a_k)=k^2 logleft(frac kk+1right)$$
$$log(a_k+1)-log(a_k)=(k+1)^2 log left(frack+1k+2right)-k^2 log left(frackk+1right)$$ Using Taylor expansions for large $k$
$$log(a_k+1)-log(a_k)=-1+frac13 k^2+Oleft(frac1k^3right)$$
$$frac a_k+1a_k=e^log(a_k+1)-log(a_k)=frac 1 e left(1+frac13 k^2+Oleft(frac1k^3right)right)to frac 1 e $$
answered 52 mins ago
Claude LeiboviciClaude Leibovici
126k1158135
126k1158135
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3188224%2fdetermine-whether-or-not-the-following-series-converge%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
You have an exponent with $k$. Your instinct should be to remove it with the root test.
$endgroup$
– Simply Beautiful Art
3 hours ago
$begingroup$
Since its squared, do I take the k^2 root
$endgroup$
– MD3
3 hours ago
$begingroup$
Does the root test say you take the $k^2$-th root?
$endgroup$
– Simply Beautiful Art
3 hours ago
1
$begingroup$
For $kge 1$, we have$$left(frackk+1right)^k^2le e^-k/2$$
$endgroup$
– Mark Viola
3 hours ago