Determine whether or not the following series converge. Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)The Series( $sum_1^+ inftyfrac1n! + n$ convergence or divergence?Should I use the comparison test for the following series?Convergence for $sum _n=1^infty :fracsqrt[4]n^2-1sqrtn^4-1$Prove whether the series convergesDetermine whether or not each of the following series is convergentDetermine whether or not the following series are convergent $sum_n=1^infty nsin(frac1n)$Determine whether or not the following series is convergent $sum_n=1^infty frac1n^n$For what values of $z$ does the series $sum_n=0^infty frac1n^2 + z^2$ converge?Determine whether this series converges or not.Determine whether the series converges or diverges.

Area of a 2D convex hull

Blender game recording at the wrong time

How is simplicity better than precision and clarity in prose?

Passing functions in C++

What is the electric potential inside a point charge?

Is there a documented rationale why the House Ways and Means chairman can demand tax info?

Active filter with series inductor and resistor - do these exist?

Classification of bundles, Postnikov towers, obstruction theory, local coefficients

Is there a service that would inform me whenever a new direct route is scheduled from a given airport?

What would be Julian Assange's expected punishment, on the current English criminal law?

What LEGO pieces have "real-world" functionality?

3 doors, three guards, one stone

Cauchy Sequence Characterized only By Directly Neighbouring Sequence Members

How can I protect witches in combat who wear limited clothing?

If I can make up priors, why can't I make up posteriors?

Did the new image of black hole confirm the general theory of relativity?

Replacing HDD with SSD; what about non-APFS/APFS?

What do I do if technical issues prevent me from filing my return on time?

Estimate capacitor parameters

Determine whether f is a function, an injection, a surjection

What loss function to use when labels are probabilities?

Need a suitable toxic chemical for a murder plot in my novel

Why is "Captain Marvel" translated as male in Portugal?

Unable to start mainnet node docker container



Determine whether or not the following series converge.



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)The Series( $sum_1^+ inftyfrac1n! + n$ convergence or divergence?Should I use the comparison test for the following series?Convergence for $sum _n=1^infty :fracsqrt[4]n^2-1sqrtn^4-1$Prove whether the series convergesDetermine whether or not each of the following series is convergentDetermine whether or not the following series are convergent $sum_n=1^infty nsin(frac1n)$Determine whether or not the following series is convergent $sum_n=1^infty frac1n^n$For what values of $z$ does the series $sum_n=0^infty frac1n^2 + z^2$ converge?Determine whether this series converges or not.Determine whether the series converges or diverges.










1












$begingroup$


$$sum_k=1^inftyleft(frac kk+1right)^k^2$$



Determine whether or not the following series converge.
I am not sure what test to use. I am pretty sure I am unable to use ratio test. Maybe comparison or Kummer, or Raabe. However I am not sure how to start it.










share|cite|improve this question











$endgroup$











  • $begingroup$
    You have an exponent with $k$. Your instinct should be to remove it with the root test.
    $endgroup$
    – Simply Beautiful Art
    3 hours ago










  • $begingroup$
    Since its squared, do I take the k^2 root
    $endgroup$
    – MD3
    3 hours ago










  • $begingroup$
    Does the root test say you take the $k^2$-th root?
    $endgroup$
    – Simply Beautiful Art
    3 hours ago






  • 1




    $begingroup$
    For $kge 1$, we have$$left(frackk+1right)^k^2le e^-k/2$$
    $endgroup$
    – Mark Viola
    3 hours ago















1












$begingroup$


$$sum_k=1^inftyleft(frac kk+1right)^k^2$$



Determine whether or not the following series converge.
I am not sure what test to use. I am pretty sure I am unable to use ratio test. Maybe comparison or Kummer, or Raabe. However I am not sure how to start it.










share|cite|improve this question











$endgroup$











  • $begingroup$
    You have an exponent with $k$. Your instinct should be to remove it with the root test.
    $endgroup$
    – Simply Beautiful Art
    3 hours ago










  • $begingroup$
    Since its squared, do I take the k^2 root
    $endgroup$
    – MD3
    3 hours ago










  • $begingroup$
    Does the root test say you take the $k^2$-th root?
    $endgroup$
    – Simply Beautiful Art
    3 hours ago






  • 1




    $begingroup$
    For $kge 1$, we have$$left(frackk+1right)^k^2le e^-k/2$$
    $endgroup$
    – Mark Viola
    3 hours ago













1












1








1





$begingroup$


$$sum_k=1^inftyleft(frac kk+1right)^k^2$$



Determine whether or not the following series converge.
I am not sure what test to use. I am pretty sure I am unable to use ratio test. Maybe comparison or Kummer, or Raabe. However I am not sure how to start it.










share|cite|improve this question











$endgroup$




$$sum_k=1^inftyleft(frac kk+1right)^k^2$$



Determine whether or not the following series converge.
I am not sure what test to use. I am pretty sure I am unable to use ratio test. Maybe comparison or Kummer, or Raabe. However I am not sure how to start it.







sequences-and-series convergence






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 3 hours ago









Simply Beautiful Art

50.9k580186




50.9k580186










asked 3 hours ago









MD3MD3

462




462











  • $begingroup$
    You have an exponent with $k$. Your instinct should be to remove it with the root test.
    $endgroup$
    – Simply Beautiful Art
    3 hours ago










  • $begingroup$
    Since its squared, do I take the k^2 root
    $endgroup$
    – MD3
    3 hours ago










  • $begingroup$
    Does the root test say you take the $k^2$-th root?
    $endgroup$
    – Simply Beautiful Art
    3 hours ago






  • 1




    $begingroup$
    For $kge 1$, we have$$left(frackk+1right)^k^2le e^-k/2$$
    $endgroup$
    – Mark Viola
    3 hours ago
















  • $begingroup$
    You have an exponent with $k$. Your instinct should be to remove it with the root test.
    $endgroup$
    – Simply Beautiful Art
    3 hours ago










  • $begingroup$
    Since its squared, do I take the k^2 root
    $endgroup$
    – MD3
    3 hours ago










  • $begingroup$
    Does the root test say you take the $k^2$-th root?
    $endgroup$
    – Simply Beautiful Art
    3 hours ago






  • 1




    $begingroup$
    For $kge 1$, we have$$left(frackk+1right)^k^2le e^-k/2$$
    $endgroup$
    – Mark Viola
    3 hours ago















$begingroup$
You have an exponent with $k$. Your instinct should be to remove it with the root test.
$endgroup$
– Simply Beautiful Art
3 hours ago




$begingroup$
You have an exponent with $k$. Your instinct should be to remove it with the root test.
$endgroup$
– Simply Beautiful Art
3 hours ago












$begingroup$
Since its squared, do I take the k^2 root
$endgroup$
– MD3
3 hours ago




$begingroup$
Since its squared, do I take the k^2 root
$endgroup$
– MD3
3 hours ago












$begingroup$
Does the root test say you take the $k^2$-th root?
$endgroup$
– Simply Beautiful Art
3 hours ago




$begingroup$
Does the root test say you take the $k^2$-th root?
$endgroup$
– Simply Beautiful Art
3 hours ago




1




1




$begingroup$
For $kge 1$, we have$$left(frackk+1right)^k^2le e^-k/2$$
$endgroup$
– Mark Viola
3 hours ago




$begingroup$
For $kge 1$, we have$$left(frackk+1right)^k^2le e^-k/2$$
$endgroup$
– Mark Viola
3 hours ago










3 Answers
3






active

oldest

votes


















2












$begingroup$

By Root test, $$limsup_n to infty sqrt[n]left(fracnn+1right)^n^2=limsup_n to infty left(fracnn+1right)^n=limsup_n to infty left(1+frac1nright)^-n=frac1e<1$$



So your series converges!






share|cite|improve this answer











$endgroup$












  • $begingroup$
    How did you know to take the supremum
    $endgroup$
    – MD3
    3 hours ago










  • $begingroup$
    See the wiki link!
    $endgroup$
    – Chinnapparaj R
    3 hours ago


















1












$begingroup$

Hint: $$left( frackk+1 right)^k sim e^-1 $$






share|cite|improve this answer









$endgroup$




















    0












    $begingroup$

    $$a_k=left(frac kk+1right)^k^2implies log(a_k)=k^2 logleft(frac kk+1right)$$



    $$log(a_k+1)-log(a_k)=(k+1)^2 log left(frack+1k+2right)-k^2 log left(frackk+1right)$$ Using Taylor expansions for large $k$
    $$log(a_k+1)-log(a_k)=-1+frac13 k^2+Oleft(frac1k^3right)$$
    $$frac a_k+1a_k=e^log(a_k+1)-log(a_k)=frac 1 e left(1+frac13 k^2+Oleft(frac1k^3right)right)to frac 1 e $$






    share|cite|improve this answer









    $endgroup$













      Your Answer








      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3188224%2fdetermine-whether-or-not-the-following-series-converge%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      2












      $begingroup$

      By Root test, $$limsup_n to infty sqrt[n]left(fracnn+1right)^n^2=limsup_n to infty left(fracnn+1right)^n=limsup_n to infty left(1+frac1nright)^-n=frac1e<1$$



      So your series converges!






      share|cite|improve this answer











      $endgroup$












      • $begingroup$
        How did you know to take the supremum
        $endgroup$
        – MD3
        3 hours ago










      • $begingroup$
        See the wiki link!
        $endgroup$
        – Chinnapparaj R
        3 hours ago















      2












      $begingroup$

      By Root test, $$limsup_n to infty sqrt[n]left(fracnn+1right)^n^2=limsup_n to infty left(fracnn+1right)^n=limsup_n to infty left(1+frac1nright)^-n=frac1e<1$$



      So your series converges!






      share|cite|improve this answer











      $endgroup$












      • $begingroup$
        How did you know to take the supremum
        $endgroup$
        – MD3
        3 hours ago










      • $begingroup$
        See the wiki link!
        $endgroup$
        – Chinnapparaj R
        3 hours ago













      2












      2








      2





      $begingroup$

      By Root test, $$limsup_n to infty sqrt[n]left(fracnn+1right)^n^2=limsup_n to infty left(fracnn+1right)^n=limsup_n to infty left(1+frac1nright)^-n=frac1e<1$$



      So your series converges!






      share|cite|improve this answer











      $endgroup$



      By Root test, $$limsup_n to infty sqrt[n]left(fracnn+1right)^n^2=limsup_n to infty left(fracnn+1right)^n=limsup_n to infty left(1+frac1nright)^-n=frac1e<1$$



      So your series converges!







      share|cite|improve this answer














      share|cite|improve this answer



      share|cite|improve this answer








      edited 3 hours ago

























      answered 3 hours ago









      Chinnapparaj RChinnapparaj R

      6,54021029




      6,54021029











      • $begingroup$
        How did you know to take the supremum
        $endgroup$
        – MD3
        3 hours ago










      • $begingroup$
        See the wiki link!
        $endgroup$
        – Chinnapparaj R
        3 hours ago
















      • $begingroup$
        How did you know to take the supremum
        $endgroup$
        – MD3
        3 hours ago










      • $begingroup$
        See the wiki link!
        $endgroup$
        – Chinnapparaj R
        3 hours ago















      $begingroup$
      How did you know to take the supremum
      $endgroup$
      – MD3
      3 hours ago




      $begingroup$
      How did you know to take the supremum
      $endgroup$
      – MD3
      3 hours ago












      $begingroup$
      See the wiki link!
      $endgroup$
      – Chinnapparaj R
      3 hours ago




      $begingroup$
      See the wiki link!
      $endgroup$
      – Chinnapparaj R
      3 hours ago











      1












      $begingroup$

      Hint: $$left( frackk+1 right)^k sim e^-1 $$






      share|cite|improve this answer









      $endgroup$

















        1












        $begingroup$

        Hint: $$left( frackk+1 right)^k sim e^-1 $$






        share|cite|improve this answer









        $endgroup$















          1












          1








          1





          $begingroup$

          Hint: $$left( frackk+1 right)^k sim e^-1 $$






          share|cite|improve this answer









          $endgroup$



          Hint: $$left( frackk+1 right)^k sim e^-1 $$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 3 hours ago









          Robert IsraelRobert Israel

          331k23221478




          331k23221478





















              0












              $begingroup$

              $$a_k=left(frac kk+1right)^k^2implies log(a_k)=k^2 logleft(frac kk+1right)$$



              $$log(a_k+1)-log(a_k)=(k+1)^2 log left(frack+1k+2right)-k^2 log left(frackk+1right)$$ Using Taylor expansions for large $k$
              $$log(a_k+1)-log(a_k)=-1+frac13 k^2+Oleft(frac1k^3right)$$
              $$frac a_k+1a_k=e^log(a_k+1)-log(a_k)=frac 1 e left(1+frac13 k^2+Oleft(frac1k^3right)right)to frac 1 e $$






              share|cite|improve this answer









              $endgroup$

















                0












                $begingroup$

                $$a_k=left(frac kk+1right)^k^2implies log(a_k)=k^2 logleft(frac kk+1right)$$



                $$log(a_k+1)-log(a_k)=(k+1)^2 log left(frack+1k+2right)-k^2 log left(frackk+1right)$$ Using Taylor expansions for large $k$
                $$log(a_k+1)-log(a_k)=-1+frac13 k^2+Oleft(frac1k^3right)$$
                $$frac a_k+1a_k=e^log(a_k+1)-log(a_k)=frac 1 e left(1+frac13 k^2+Oleft(frac1k^3right)right)to frac 1 e $$






                share|cite|improve this answer









                $endgroup$















                  0












                  0








                  0





                  $begingroup$

                  $$a_k=left(frac kk+1right)^k^2implies log(a_k)=k^2 logleft(frac kk+1right)$$



                  $$log(a_k+1)-log(a_k)=(k+1)^2 log left(frack+1k+2right)-k^2 log left(frackk+1right)$$ Using Taylor expansions for large $k$
                  $$log(a_k+1)-log(a_k)=-1+frac13 k^2+Oleft(frac1k^3right)$$
                  $$frac a_k+1a_k=e^log(a_k+1)-log(a_k)=frac 1 e left(1+frac13 k^2+Oleft(frac1k^3right)right)to frac 1 e $$






                  share|cite|improve this answer









                  $endgroup$



                  $$a_k=left(frac kk+1right)^k^2implies log(a_k)=k^2 logleft(frac kk+1right)$$



                  $$log(a_k+1)-log(a_k)=(k+1)^2 log left(frack+1k+2right)-k^2 log left(frackk+1right)$$ Using Taylor expansions for large $k$
                  $$log(a_k+1)-log(a_k)=-1+frac13 k^2+Oleft(frac1k^3right)$$
                  $$frac a_k+1a_k=e^log(a_k+1)-log(a_k)=frac 1 e left(1+frac13 k^2+Oleft(frac1k^3right)right)to frac 1 e $$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 52 mins ago









                  Claude LeiboviciClaude Leibovici

                  126k1158135




                  126k1158135



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3188224%2fdetermine-whether-or-not-the-following-series-converge%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      名間水力發電廠 目录 沿革 設施 鄰近設施 註釋 外部連結 导航菜单23°50′10″N 120°42′41″E / 23.83611°N 120.71139°E / 23.83611; 120.7113923°50′10″N 120°42′41″E / 23.83611°N 120.71139°E / 23.83611; 120.71139計畫概要原始内容臺灣第一座BOT 模式開發的水力發電廠-名間水力電廠名間水力發電廠 水利署首件BOT案原始内容《小檔案》名間電廠 首座BOT水力發電廠原始内容名間電廠BOT - 經濟部水利署中區水資源局

                      Prove that NP is closed under karp reduction?Space(n) not closed under Karp reductions - what about NTime(n)?Class P is closed under rotation?Prove or disprove that $NL$ is closed under polynomial many-one reductions$mathbfNC_2$ is closed under log-space reductionOn Karp reductionwhen can I know if a class (complexity) is closed under reduction (cook/karp)Check if class $PSPACE$ is closed under polyonomially space reductionIs NPSPACE also closed under polynomial-time reduction and under log-space reduction?Prove PSPACE is closed under complement?Prove PSPACE is closed under union?

                      Is my guitar’s action too high? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Strings too stiff on a recently purchased acoustic guitar | Cort AD880CEIs the action of my guitar really high?Μy little finger is too weak to play guitarWith guitar, how long should I give my fingers to strengthen / callous?When playing a fret the guitar sounds mutedPlaying (Barre) chords up the guitar neckI think my guitar strings are wound too tight and I can't play barre chordsF barre chord on an SG guitarHow to find to the right strings of a barre chord by feel?High action on higher fret on my steel acoustic guitar