New Order #5: where Fibonacci and Beatty meet at Wythoff Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern) The PPCG Site design is on its way - help us make it awesome! Sandbox for Proposed ChallengesNew order #4: WorldNew Order #2: Turn My WayNew Order #1: How does this feel?New Order #3: 5 8 6Print the intersection of sequencesFibonacci ExponentsFind the Fibonacci KernelSum my Fibonaccified divisors!Reverse FibonacciUpper or Lower Wythoff?New Order #1: How does this feel?New Order #2: Turn My WayNew Order #3: 5 8 6New order #4: World

Cold is to Refrigerator as warm is to?

What to do with post with dry rot?

How to dynamically generate the hash value of a file while it gets downloaded from any website?

Do working physicists consider Newtonian mechanics to be "falsified"?

Two different pronunciation of "понял"

How to rotate it perfectly?

How did passengers keep warm on sail ships?

Direct Experience of Meditation

Need a suitable toxic chemical for a murder plot in my novel

Keep going mode for require-package

How can I make names more distinctive without making them longer?

Was credit for the black hole image misattributed?

Array/tabular for long multiplication

Are my PIs rude or am I just being too sensitive?

How do you clear the ApexPages.getMessages() collection in a test?

How to colour the US map with Yellow, Green, Red and Blue to minimize the number of states with the colour of Green

The following signatures were invalid: EXPKEYSIG 1397BC53640DB551

What do you call a plan that's an alternative plan in case your initial plan fails?

Why is "Captain Marvel" translated as male in Portugal?

Can I throw a sword that doesn't have the Thrown property at someone?

Limit for e and 1/e

If I can make up priors, why can't I make up posteriors?

I'm thinking of a number

Classification of bundles, Postnikov towers, obstruction theory, local coefficients



New Order #5: where Fibonacci and Beatty meet at Wythoff



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)
The PPCG Site design is on its way - help us make it awesome!
Sandbox for Proposed ChallengesNew order #4: WorldNew Order #2: Turn My WayNew Order #1: How does this feel?New Order #3: 5 8 6Print the intersection of sequencesFibonacci ExponentsFind the Fibonacci KernelSum my Fibonaccified divisors!Reverse FibonacciUpper or Lower Wythoff?New Order #1: How does this feel?New Order #2: Turn My WayNew Order #3: 5 8 6New order #4: World










5












$begingroup$


Introduction (may be ignored)



Putting all positive numbers in its regular order (1, 2, 3, ...) is a bit boring, isn't it? So here is a series of challenges around permutations (reshuffelings) of all positive numbers. This is the fifth challenge in this series (links to the first, second, third and fourth challenge).



In this challenge, we will meet the Wythoff array, which is a intertwined avalanche of Fibonacci sequences and Beatty sequences!



The Fibonacci numbers are probably for most of you a well known sequence. Given two starting numbers $F_0$ and $F_1$, the following $F_n$ are given by: $F_n = F_(n-1) + F_(n-2)$ for $n>2$.



The Beatty sequence, given a parameter $r$ is: $B^r_n = lfloor rn rfloor$ for $n ge 1$. One of the properties of the Beatty sequence is that for every parameter $r$, there is exactly one parameter $s=r/(r-1)$, such that the Beatty sequences for those parameters are disjunct and joined together, they span all natural numbers excluding 0 (e.g.: $B^r cup B^r/(r-1) = BbbN setminus 0$).



Now here comes the mindblowing part: you can create an array, where each row is a Fibonacci sequence and each column is a Beatty sequence. This array is the Wythoff array. The best part is: every positive number appears exactly once in this array! The array looks like this:



 1 2 3 5 8 13 21 34 55 89 144 ...
4 7 11 18 29 47 76 123 199 322 521 ...
6 10 16 26 42 68 110 178 288 466 754 ...
9 15 24 39 63 102 165 267 432 699 1131 ...
12 20 32 52 84 136 220 356 576 932 1508 ...
14 23 37 60 97 157 254 411 665 1076 1741 ...
17 28 45 73 118 191 309 500 809 1309 2118 ...
19 31 50 81 131 212 343 555 898 1453 2351 ...
22 36 58 94 152 246 398 644 1042 1686 2728 ...
25 41 66 107 173 280 453 733 1186 1919 3105 ...
27 44 71 115 186 301 487 788 1275 2063 3338 ...
...


An element at row $m$ and column $n$ is defined as:



$A_m,n = begincases
A_m,1 = leftlfloor lfloor mvarphi rfloor varphi rightrfloor\
A_m,2 = leftlfloor lfloor mvarphi rfloor varphi^2 rightrfloor\
A_m,n = A_m,n-2+A_m,n-1 text for n > 2
endcases$



where $varphi$ is the golden ratio: $varphi=frac1+sqrt52$.



If we follow the anti-diagonals of this array, we get A035513, which is the target sequence for this challenge (note that this sequence is added to the OEIS by Neil Sloane himself!). Since this is a "pure sequence" challenge, the task is to output $a(n)$ for a given $n$ as input, where $a(n)$ is A035513.



There are different strategies you can follow to get to $a(n)$, which makes this challenge (in my opinion) really interesting.



Task



Given an integer input $n$, output $a(n)$ in integer format, where $a(n)$ is A035513.



Note: 1-based indexing is assumed here; you may use 0-based indexing, so $a(0) = 1; a(1) = 2$, etc. Please mention this in your answer if you choose to use this.



Test cases



Input | Output
---------------
1 | 1
5 | 7
20 | 20
50 | 136
78 | 30
123 | 3194
1234 | 8212236486
3000 | 814
9999 | 740496902
29890 | 637


Rules



  • Input and output are integers (your program should at least support input and output in the range of 1 up to 32767). Note that $a(n)$ goes up to 30 digit numbers in this range...

  • Invalid input (0, floats, strings, negative values, etc.) may lead to unpredicted output, errors or (un)defined behaviour.

  • Default I/O rules apply.


  • Default loopholes are forbidden.

  • This is code-golf, so the shortest answers in bytes wins









share|improve this question









$endgroup$











  • $begingroup$
    So what's the New Order reference here?
    $endgroup$
    – Luis Mendo
    2 hours ago










  • $begingroup$
    @LuisMendo: the avalanche of Fibonacci and Beatty sequences, which form the Wythoff array...
    $endgroup$
    – agtoever
    1 hour ago










  • $begingroup$
    Ah, I completely missed that! Now I feel regret...
    $endgroup$
    – Luis Mendo
    1 hour ago










  • $begingroup$
    Is a floating point representation of phi (or rt(5)) and application of the recurrence going to satisfy the range requirement?
    $endgroup$
    – Jonathan Allan
    1 hour ago










  • $begingroup$
    @JonathanAllan : good point... I'll look into that later. For now: let's pose that if some code passes the test cases, then it works sufficiently.
    $endgroup$
    – agtoever
    1 hour ago
















5












$begingroup$


Introduction (may be ignored)



Putting all positive numbers in its regular order (1, 2, 3, ...) is a bit boring, isn't it? So here is a series of challenges around permutations (reshuffelings) of all positive numbers. This is the fifth challenge in this series (links to the first, second, third and fourth challenge).



In this challenge, we will meet the Wythoff array, which is a intertwined avalanche of Fibonacci sequences and Beatty sequences!



The Fibonacci numbers are probably for most of you a well known sequence. Given two starting numbers $F_0$ and $F_1$, the following $F_n$ are given by: $F_n = F_(n-1) + F_(n-2)$ for $n>2$.



The Beatty sequence, given a parameter $r$ is: $B^r_n = lfloor rn rfloor$ for $n ge 1$. One of the properties of the Beatty sequence is that for every parameter $r$, there is exactly one parameter $s=r/(r-1)$, such that the Beatty sequences for those parameters are disjunct and joined together, they span all natural numbers excluding 0 (e.g.: $B^r cup B^r/(r-1) = BbbN setminus 0$).



Now here comes the mindblowing part: you can create an array, where each row is a Fibonacci sequence and each column is a Beatty sequence. This array is the Wythoff array. The best part is: every positive number appears exactly once in this array! The array looks like this:



 1 2 3 5 8 13 21 34 55 89 144 ...
4 7 11 18 29 47 76 123 199 322 521 ...
6 10 16 26 42 68 110 178 288 466 754 ...
9 15 24 39 63 102 165 267 432 699 1131 ...
12 20 32 52 84 136 220 356 576 932 1508 ...
14 23 37 60 97 157 254 411 665 1076 1741 ...
17 28 45 73 118 191 309 500 809 1309 2118 ...
19 31 50 81 131 212 343 555 898 1453 2351 ...
22 36 58 94 152 246 398 644 1042 1686 2728 ...
25 41 66 107 173 280 453 733 1186 1919 3105 ...
27 44 71 115 186 301 487 788 1275 2063 3338 ...
...


An element at row $m$ and column $n$ is defined as:



$A_m,n = begincases
A_m,1 = leftlfloor lfloor mvarphi rfloor varphi rightrfloor\
A_m,2 = leftlfloor lfloor mvarphi rfloor varphi^2 rightrfloor\
A_m,n = A_m,n-2+A_m,n-1 text for n > 2
endcases$



where $varphi$ is the golden ratio: $varphi=frac1+sqrt52$.



If we follow the anti-diagonals of this array, we get A035513, which is the target sequence for this challenge (note that this sequence is added to the OEIS by Neil Sloane himself!). Since this is a "pure sequence" challenge, the task is to output $a(n)$ for a given $n$ as input, where $a(n)$ is A035513.



There are different strategies you can follow to get to $a(n)$, which makes this challenge (in my opinion) really interesting.



Task



Given an integer input $n$, output $a(n)$ in integer format, where $a(n)$ is A035513.



Note: 1-based indexing is assumed here; you may use 0-based indexing, so $a(0) = 1; a(1) = 2$, etc. Please mention this in your answer if you choose to use this.



Test cases



Input | Output
---------------
1 | 1
5 | 7
20 | 20
50 | 136
78 | 30
123 | 3194
1234 | 8212236486
3000 | 814
9999 | 740496902
29890 | 637


Rules



  • Input and output are integers (your program should at least support input and output in the range of 1 up to 32767). Note that $a(n)$ goes up to 30 digit numbers in this range...

  • Invalid input (0, floats, strings, negative values, etc.) may lead to unpredicted output, errors or (un)defined behaviour.

  • Default I/O rules apply.


  • Default loopholes are forbidden.

  • This is code-golf, so the shortest answers in bytes wins









share|improve this question









$endgroup$











  • $begingroup$
    So what's the New Order reference here?
    $endgroup$
    – Luis Mendo
    2 hours ago










  • $begingroup$
    @LuisMendo: the avalanche of Fibonacci and Beatty sequences, which form the Wythoff array...
    $endgroup$
    – agtoever
    1 hour ago










  • $begingroup$
    Ah, I completely missed that! Now I feel regret...
    $endgroup$
    – Luis Mendo
    1 hour ago










  • $begingroup$
    Is a floating point representation of phi (or rt(5)) and application of the recurrence going to satisfy the range requirement?
    $endgroup$
    – Jonathan Allan
    1 hour ago










  • $begingroup$
    @JonathanAllan : good point... I'll look into that later. For now: let's pose that if some code passes the test cases, then it works sufficiently.
    $endgroup$
    – agtoever
    1 hour ago














5












5








5





$begingroup$


Introduction (may be ignored)



Putting all positive numbers in its regular order (1, 2, 3, ...) is a bit boring, isn't it? So here is a series of challenges around permutations (reshuffelings) of all positive numbers. This is the fifth challenge in this series (links to the first, second, third and fourth challenge).



In this challenge, we will meet the Wythoff array, which is a intertwined avalanche of Fibonacci sequences and Beatty sequences!



The Fibonacci numbers are probably for most of you a well known sequence. Given two starting numbers $F_0$ and $F_1$, the following $F_n$ are given by: $F_n = F_(n-1) + F_(n-2)$ for $n>2$.



The Beatty sequence, given a parameter $r$ is: $B^r_n = lfloor rn rfloor$ for $n ge 1$. One of the properties of the Beatty sequence is that for every parameter $r$, there is exactly one parameter $s=r/(r-1)$, such that the Beatty sequences for those parameters are disjunct and joined together, they span all natural numbers excluding 0 (e.g.: $B^r cup B^r/(r-1) = BbbN setminus 0$).



Now here comes the mindblowing part: you can create an array, where each row is a Fibonacci sequence and each column is a Beatty sequence. This array is the Wythoff array. The best part is: every positive number appears exactly once in this array! The array looks like this:



 1 2 3 5 8 13 21 34 55 89 144 ...
4 7 11 18 29 47 76 123 199 322 521 ...
6 10 16 26 42 68 110 178 288 466 754 ...
9 15 24 39 63 102 165 267 432 699 1131 ...
12 20 32 52 84 136 220 356 576 932 1508 ...
14 23 37 60 97 157 254 411 665 1076 1741 ...
17 28 45 73 118 191 309 500 809 1309 2118 ...
19 31 50 81 131 212 343 555 898 1453 2351 ...
22 36 58 94 152 246 398 644 1042 1686 2728 ...
25 41 66 107 173 280 453 733 1186 1919 3105 ...
27 44 71 115 186 301 487 788 1275 2063 3338 ...
...


An element at row $m$ and column $n$ is defined as:



$A_m,n = begincases
A_m,1 = leftlfloor lfloor mvarphi rfloor varphi rightrfloor\
A_m,2 = leftlfloor lfloor mvarphi rfloor varphi^2 rightrfloor\
A_m,n = A_m,n-2+A_m,n-1 text for n > 2
endcases$



where $varphi$ is the golden ratio: $varphi=frac1+sqrt52$.



If we follow the anti-diagonals of this array, we get A035513, which is the target sequence for this challenge (note that this sequence is added to the OEIS by Neil Sloane himself!). Since this is a "pure sequence" challenge, the task is to output $a(n)$ for a given $n$ as input, where $a(n)$ is A035513.



There are different strategies you can follow to get to $a(n)$, which makes this challenge (in my opinion) really interesting.



Task



Given an integer input $n$, output $a(n)$ in integer format, where $a(n)$ is A035513.



Note: 1-based indexing is assumed here; you may use 0-based indexing, so $a(0) = 1; a(1) = 2$, etc. Please mention this in your answer if you choose to use this.



Test cases



Input | Output
---------------
1 | 1
5 | 7
20 | 20
50 | 136
78 | 30
123 | 3194
1234 | 8212236486
3000 | 814
9999 | 740496902
29890 | 637


Rules



  • Input and output are integers (your program should at least support input and output in the range of 1 up to 32767). Note that $a(n)$ goes up to 30 digit numbers in this range...

  • Invalid input (0, floats, strings, negative values, etc.) may lead to unpredicted output, errors or (un)defined behaviour.

  • Default I/O rules apply.


  • Default loopholes are forbidden.

  • This is code-golf, so the shortest answers in bytes wins









share|improve this question









$endgroup$




Introduction (may be ignored)



Putting all positive numbers in its regular order (1, 2, 3, ...) is a bit boring, isn't it? So here is a series of challenges around permutations (reshuffelings) of all positive numbers. This is the fifth challenge in this series (links to the first, second, third and fourth challenge).



In this challenge, we will meet the Wythoff array, which is a intertwined avalanche of Fibonacci sequences and Beatty sequences!



The Fibonacci numbers are probably for most of you a well known sequence. Given two starting numbers $F_0$ and $F_1$, the following $F_n$ are given by: $F_n = F_(n-1) + F_(n-2)$ for $n>2$.



The Beatty sequence, given a parameter $r$ is: $B^r_n = lfloor rn rfloor$ for $n ge 1$. One of the properties of the Beatty sequence is that for every parameter $r$, there is exactly one parameter $s=r/(r-1)$, such that the Beatty sequences for those parameters are disjunct and joined together, they span all natural numbers excluding 0 (e.g.: $B^r cup B^r/(r-1) = BbbN setminus 0$).



Now here comes the mindblowing part: you can create an array, where each row is a Fibonacci sequence and each column is a Beatty sequence. This array is the Wythoff array. The best part is: every positive number appears exactly once in this array! The array looks like this:



 1 2 3 5 8 13 21 34 55 89 144 ...
4 7 11 18 29 47 76 123 199 322 521 ...
6 10 16 26 42 68 110 178 288 466 754 ...
9 15 24 39 63 102 165 267 432 699 1131 ...
12 20 32 52 84 136 220 356 576 932 1508 ...
14 23 37 60 97 157 254 411 665 1076 1741 ...
17 28 45 73 118 191 309 500 809 1309 2118 ...
19 31 50 81 131 212 343 555 898 1453 2351 ...
22 36 58 94 152 246 398 644 1042 1686 2728 ...
25 41 66 107 173 280 453 733 1186 1919 3105 ...
27 44 71 115 186 301 487 788 1275 2063 3338 ...
...


An element at row $m$ and column $n$ is defined as:



$A_m,n = begincases
A_m,1 = leftlfloor lfloor mvarphi rfloor varphi rightrfloor\
A_m,2 = leftlfloor lfloor mvarphi rfloor varphi^2 rightrfloor\
A_m,n = A_m,n-2+A_m,n-1 text for n > 2
endcases$



where $varphi$ is the golden ratio: $varphi=frac1+sqrt52$.



If we follow the anti-diagonals of this array, we get A035513, which is the target sequence for this challenge (note that this sequence is added to the OEIS by Neil Sloane himself!). Since this is a "pure sequence" challenge, the task is to output $a(n)$ for a given $n$ as input, where $a(n)$ is A035513.



There are different strategies you can follow to get to $a(n)$, which makes this challenge (in my opinion) really interesting.



Task



Given an integer input $n$, output $a(n)$ in integer format, where $a(n)$ is A035513.



Note: 1-based indexing is assumed here; you may use 0-based indexing, so $a(0) = 1; a(1) = 2$, etc. Please mention this in your answer if you choose to use this.



Test cases



Input | Output
---------------
1 | 1
5 | 7
20 | 20
50 | 136
78 | 30
123 | 3194
1234 | 8212236486
3000 | 814
9999 | 740496902
29890 | 637


Rules



  • Input and output are integers (your program should at least support input and output in the range of 1 up to 32767). Note that $a(n)$ goes up to 30 digit numbers in this range...

  • Invalid input (0, floats, strings, negative values, etc.) may lead to unpredicted output, errors or (un)defined behaviour.

  • Default I/O rules apply.


  • Default loopholes are forbidden.

  • This is code-golf, so the shortest answers in bytes wins






code-golf sequence






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked 2 hours ago









agtoeveragtoever

1,354424




1,354424











  • $begingroup$
    So what's the New Order reference here?
    $endgroup$
    – Luis Mendo
    2 hours ago










  • $begingroup$
    @LuisMendo: the avalanche of Fibonacci and Beatty sequences, which form the Wythoff array...
    $endgroup$
    – agtoever
    1 hour ago










  • $begingroup$
    Ah, I completely missed that! Now I feel regret...
    $endgroup$
    – Luis Mendo
    1 hour ago










  • $begingroup$
    Is a floating point representation of phi (or rt(5)) and application of the recurrence going to satisfy the range requirement?
    $endgroup$
    – Jonathan Allan
    1 hour ago










  • $begingroup$
    @JonathanAllan : good point... I'll look into that later. For now: let's pose that if some code passes the test cases, then it works sufficiently.
    $endgroup$
    – agtoever
    1 hour ago

















  • $begingroup$
    So what's the New Order reference here?
    $endgroup$
    – Luis Mendo
    2 hours ago










  • $begingroup$
    @LuisMendo: the avalanche of Fibonacci and Beatty sequences, which form the Wythoff array...
    $endgroup$
    – agtoever
    1 hour ago










  • $begingroup$
    Ah, I completely missed that! Now I feel regret...
    $endgroup$
    – Luis Mendo
    1 hour ago










  • $begingroup$
    Is a floating point representation of phi (or rt(5)) and application of the recurrence going to satisfy the range requirement?
    $endgroup$
    – Jonathan Allan
    1 hour ago










  • $begingroup$
    @JonathanAllan : good point... I'll look into that later. For now: let's pose that if some code passes the test cases, then it works sufficiently.
    $endgroup$
    – agtoever
    1 hour ago
















$begingroup$
So what's the New Order reference here?
$endgroup$
– Luis Mendo
2 hours ago




$begingroup$
So what's the New Order reference here?
$endgroup$
– Luis Mendo
2 hours ago












$begingroup$
@LuisMendo: the avalanche of Fibonacci and Beatty sequences, which form the Wythoff array...
$endgroup$
– agtoever
1 hour ago




$begingroup$
@LuisMendo: the avalanche of Fibonacci and Beatty sequences, which form the Wythoff array...
$endgroup$
– agtoever
1 hour ago












$begingroup$
Ah, I completely missed that! Now I feel regret...
$endgroup$
– Luis Mendo
1 hour ago




$begingroup$
Ah, I completely missed that! Now I feel regret...
$endgroup$
– Luis Mendo
1 hour ago












$begingroup$
Is a floating point representation of phi (or rt(5)) and application of the recurrence going to satisfy the range requirement?
$endgroup$
– Jonathan Allan
1 hour ago




$begingroup$
Is a floating point representation of phi (or rt(5)) and application of the recurrence going to satisfy the range requirement?
$endgroup$
– Jonathan Allan
1 hour ago












$begingroup$
@JonathanAllan : good point... I'll look into that later. For now: let's pose that if some code passes the test cases, then it works sufficiently.
$endgroup$
– agtoever
1 hour ago





$begingroup$
@JonathanAllan : good point... I'll look into that later. For now: let's pose that if some code passes the test cases, then it works sufficiently.
$endgroup$
– agtoever
1 hour ago











3 Answers
3






active

oldest

votes


















1












$begingroup$


Jelly, 30 bytes



If 9999 is really meant to yield 740496902 and not 108240 then I got something wrong



p`SÞ⁸ịð;Øp,²;¤×Ḟ¥/;+ƝQƊ⁹¡ị@ð/


Try it online!

This is a little slow, but a huge improvement is made with a prefix of Ḥ½Ċ (double, square-root, ceiling) like in this test-suite.






share|improve this answer









$endgroup$








  • 1




    $begingroup$
    you are right! 740496902 is the result for 999
    $endgroup$
    – J42161217
    10 mins ago










  • $begingroup$
    Combining the first part of yours and second part of mine gives 25 bytes. Not sure which of us should have the combined version!
    $endgroup$
    – Nick Kennedy
    7 secs ago


















0












$begingroup$


Wolfram Language (Mathematica), 90 bytes



Flatten[Table[(F=Fibonacci)[a+1]⌊(b-a+1)GoldenRatio⌋+(b-a)F@a,b,#,a,b,1,-1]][[#]]&


Try it online!






share|improve this answer









$endgroup$




















    0












    $begingroup$


    Jelly, 27 bytes



    RṁṬ€œið’;×ØpḞ¥×ạ‘+Ø.ÆḞʋSð@/


    Try it online!



    Monadic link using 1-based indexing. I’m sure there’s a better way of generating the row/column indices from n, but this works ok. In its shortest form it’s too slow for larger n on TIO, so the following Try it online! reduces the size initial triangular list at the cost of three bytes.






    share|improve this answer









    $endgroup$













      Your Answer






      StackExchange.ifUsing("editor", function ()
      StackExchange.using("externalEditor", function ()
      StackExchange.using("snippets", function ()
      StackExchange.snippets.init();
      );
      );
      , "code-snippets");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "200"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: false,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: null,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodegolf.stackexchange.com%2fquestions%2f183186%2fnew-order-5-where-fibonacci-and-beatty-meet-at-wythoff%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      1












      $begingroup$


      Jelly, 30 bytes



      If 9999 is really meant to yield 740496902 and not 108240 then I got something wrong



      p`SÞ⁸ịð;Øp,²;¤×Ḟ¥/;+ƝQƊ⁹¡ị@ð/


      Try it online!

      This is a little slow, but a huge improvement is made with a prefix of Ḥ½Ċ (double, square-root, ceiling) like in this test-suite.






      share|improve this answer









      $endgroup$








      • 1




        $begingroup$
        you are right! 740496902 is the result for 999
        $endgroup$
        – J42161217
        10 mins ago










      • $begingroup$
        Combining the first part of yours and second part of mine gives 25 bytes. Not sure which of us should have the combined version!
        $endgroup$
        – Nick Kennedy
        7 secs ago















      1












      $begingroup$


      Jelly, 30 bytes



      If 9999 is really meant to yield 740496902 and not 108240 then I got something wrong



      p`SÞ⁸ịð;Øp,²;¤×Ḟ¥/;+ƝQƊ⁹¡ị@ð/


      Try it online!

      This is a little slow, but a huge improvement is made with a prefix of Ḥ½Ċ (double, square-root, ceiling) like in this test-suite.






      share|improve this answer









      $endgroup$








      • 1




        $begingroup$
        you are right! 740496902 is the result for 999
        $endgroup$
        – J42161217
        10 mins ago










      • $begingroup$
        Combining the first part of yours and second part of mine gives 25 bytes. Not sure which of us should have the combined version!
        $endgroup$
        – Nick Kennedy
        7 secs ago













      1












      1








      1





      $begingroup$


      Jelly, 30 bytes



      If 9999 is really meant to yield 740496902 and not 108240 then I got something wrong



      p`SÞ⁸ịð;Øp,²;¤×Ḟ¥/;+ƝQƊ⁹¡ị@ð/


      Try it online!

      This is a little slow, but a huge improvement is made with a prefix of Ḥ½Ċ (double, square-root, ceiling) like in this test-suite.






      share|improve this answer









      $endgroup$




      Jelly, 30 bytes



      If 9999 is really meant to yield 740496902 and not 108240 then I got something wrong



      p`SÞ⁸ịð;Øp,²;¤×Ḟ¥/;+ƝQƊ⁹¡ị@ð/


      Try it online!

      This is a little slow, but a huge improvement is made with a prefix of Ḥ½Ċ (double, square-root, ceiling) like in this test-suite.







      share|improve this answer












      share|improve this answer



      share|improve this answer










      answered 15 mins ago









      Jonathan AllanJonathan Allan

      54.3k537174




      54.3k537174







      • 1




        $begingroup$
        you are right! 740496902 is the result for 999
        $endgroup$
        – J42161217
        10 mins ago










      • $begingroup$
        Combining the first part of yours and second part of mine gives 25 bytes. Not sure which of us should have the combined version!
        $endgroup$
        – Nick Kennedy
        7 secs ago












      • 1




        $begingroup$
        you are right! 740496902 is the result for 999
        $endgroup$
        – J42161217
        10 mins ago










      • $begingroup$
        Combining the first part of yours and second part of mine gives 25 bytes. Not sure which of us should have the combined version!
        $endgroup$
        – Nick Kennedy
        7 secs ago







      1




      1




      $begingroup$
      you are right! 740496902 is the result for 999
      $endgroup$
      – J42161217
      10 mins ago




      $begingroup$
      you are right! 740496902 is the result for 999
      $endgroup$
      – J42161217
      10 mins ago












      $begingroup$
      Combining the first part of yours and second part of mine gives 25 bytes. Not sure which of us should have the combined version!
      $endgroup$
      – Nick Kennedy
      7 secs ago




      $begingroup$
      Combining the first part of yours and second part of mine gives 25 bytes. Not sure which of us should have the combined version!
      $endgroup$
      – Nick Kennedy
      7 secs ago











      0












      $begingroup$


      Wolfram Language (Mathematica), 90 bytes



      Flatten[Table[(F=Fibonacci)[a+1]⌊(b-a+1)GoldenRatio⌋+(b-a)F@a,b,#,a,b,1,-1]][[#]]&


      Try it online!






      share|improve this answer









      $endgroup$

















        0












        $begingroup$


        Wolfram Language (Mathematica), 90 bytes



        Flatten[Table[(F=Fibonacci)[a+1]⌊(b-a+1)GoldenRatio⌋+(b-a)F@a,b,#,a,b,1,-1]][[#]]&


        Try it online!






        share|improve this answer









        $endgroup$















          0












          0








          0





          $begingroup$


          Wolfram Language (Mathematica), 90 bytes



          Flatten[Table[(F=Fibonacci)[a+1]⌊(b-a+1)GoldenRatio⌋+(b-a)F@a,b,#,a,b,1,-1]][[#]]&


          Try it online!






          share|improve this answer









          $endgroup$




          Wolfram Language (Mathematica), 90 bytes



          Flatten[Table[(F=Fibonacci)[a+1]⌊(b-a+1)GoldenRatio⌋+(b-a)F@a,b,#,a,b,1,-1]][[#]]&


          Try it online!







          share|improve this answer












          share|improve this answer



          share|improve this answer










          answered 1 hour ago









          J42161217J42161217

          14k21353




          14k21353





















              0












              $begingroup$


              Jelly, 27 bytes



              RṁṬ€œið’;×ØpḞ¥×ạ‘+Ø.ÆḞʋSð@/


              Try it online!



              Monadic link using 1-based indexing. I’m sure there’s a better way of generating the row/column indices from n, but this works ok. In its shortest form it’s too slow for larger n on TIO, so the following Try it online! reduces the size initial triangular list at the cost of three bytes.






              share|improve this answer









              $endgroup$

















                0












                $begingroup$


                Jelly, 27 bytes



                RṁṬ€œið’;×ØpḞ¥×ạ‘+Ø.ÆḞʋSð@/


                Try it online!



                Monadic link using 1-based indexing. I’m sure there’s a better way of generating the row/column indices from n, but this works ok. In its shortest form it’s too slow for larger n on TIO, so the following Try it online! reduces the size initial triangular list at the cost of three bytes.






                share|improve this answer









                $endgroup$















                  0












                  0








                  0





                  $begingroup$


                  Jelly, 27 bytes



                  RṁṬ€œið’;×ØpḞ¥×ạ‘+Ø.ÆḞʋSð@/


                  Try it online!



                  Monadic link using 1-based indexing. I’m sure there’s a better way of generating the row/column indices from n, but this works ok. In its shortest form it’s too slow for larger n on TIO, so the following Try it online! reduces the size initial triangular list at the cost of three bytes.






                  share|improve this answer









                  $endgroup$




                  Jelly, 27 bytes



                  RṁṬ€œið’;×ØpḞ¥×ạ‘+Ø.ÆḞʋSð@/


                  Try it online!



                  Monadic link using 1-based indexing. I’m sure there’s a better way of generating the row/column indices from n, but this works ok. In its shortest form it’s too slow for larger n on TIO, so the following Try it online! reduces the size initial triangular list at the cost of three bytes.







                  share|improve this answer












                  share|improve this answer



                  share|improve this answer










                  answered 10 mins ago









                  Nick KennedyNick Kennedy

                  1,55649




                  1,55649



























                      draft saved

                      draft discarded
















































                      If this is an answer to a challenge…



                      • …Be sure to follow the challenge specification. However, please refrain from exploiting obvious loopholes. Answers abusing any of the standard loopholes are considered invalid. If you think a specification is unclear or underspecified, comment on the question instead.


                      • …Try to optimize your score. For instance, answers to code-golf challenges should attempt to be as short as possible. You can always include a readable version of the code in addition to the competitive one.
                        Explanations of your answer make it more interesting to read and are very much encouraged.


                      • …Include a short header which indicates the language(s) of your code and its score, as defined by the challenge.


                      More generally…



                      • …Please make sure to answer the question and provide sufficient detail.


                      • …Avoid asking for help, clarification or responding to other answers (use comments instead).




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodegolf.stackexchange.com%2fquestions%2f183186%2fnew-order-5-where-fibonacci-and-beatty-meet-at-wythoff%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      名間水力發電廠 目录 沿革 設施 鄰近設施 註釋 外部連結 导航菜单23°50′10″N 120°42′41″E / 23.83611°N 120.71139°E / 23.83611; 120.7113923°50′10″N 120°42′41″E / 23.83611°N 120.71139°E / 23.83611; 120.71139計畫概要原始内容臺灣第一座BOT 模式開發的水力發電廠-名間水力電廠名間水力發電廠 水利署首件BOT案原始内容《小檔案》名間電廠 首座BOT水力發電廠原始内容名間電廠BOT - 經濟部水利署中區水資源局

                      Prove that NP is closed under karp reduction?Space(n) not closed under Karp reductions - what about NTime(n)?Class P is closed under rotation?Prove or disprove that $NL$ is closed under polynomial many-one reductions$mathbfNC_2$ is closed under log-space reductionOn Karp reductionwhen can I know if a class (complexity) is closed under reduction (cook/karp)Check if class $PSPACE$ is closed under polyonomially space reductionIs NPSPACE also closed under polynomial-time reduction and under log-space reduction?Prove PSPACE is closed under complement?Prove PSPACE is closed under union?

                      Is my guitar’s action too high? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Strings too stiff on a recently purchased acoustic guitar | Cort AD880CEIs the action of my guitar really high?Μy little finger is too weak to play guitarWith guitar, how long should I give my fingers to strengthen / callous?When playing a fret the guitar sounds mutedPlaying (Barre) chords up the guitar neckI think my guitar strings are wound too tight and I can't play barre chordsF barre chord on an SG guitarHow to find to the right strings of a barre chord by feel?High action on higher fret on my steel acoustic guitar