Eigenvalues of $2$ symmetric $4times 4$ matrices: why is one negative of the other?If the eigenvalues are distinct then the eigenspaces are all one dimensionalCongruence of invertible skew symmetric matricesEigenvalues of a general block hermitian matrixEigenvalues of Overlapping block diagonal matricesHow to find a symmetric matrix that transforms one ellipsoid to another?The matrix of an endomorphismA conjecture regarding the eigenvalues of real symmetric matricesProve that the span of $M_1, M_2, M_3$ is the set of all symmetric $2times2$ matrices.Looking for properties of, or formulae for eigenvalues of a symmetric matrix reminiscent of Toeplitz matricesDo hermitian matrices commute when they occupy they same elements but have different values?

How to write a macro that is braces sensitive?

Email Account under attack (really) - anything I can do?

TGV timetables / schedules?

Python: next in for loop

What's the output of a record cartridge playing an out-of-speed record

How to test if a transaction is standard without spending real money?

Why did the Germans forbid the possession of pet pigeons in Rostov-on-Don in 1941?

can i play a electric guitar through a bass amp?

What is the word for reserving something for yourself before others do?

What do you call a Matrix-like slowdown and camera movement effect?

Why doesn't H₄O²⁺ exist?

How does one intimidate enemies without having the capacity for violence?

Theorem, big Paralist and Amsart

Is it unprofessional to ask if a job posting on GlassDoor is real?

Why do falling prices hurt debtors?

Which models of the Boeing 737 are still in production?

Is it important to consider tone, melody, and musical form while writing a song?

Problem of parity - Can we draw a closed path made up of 20 line segments...

Is it tax fraud for an individual to declare non-taxable revenue as taxable income? (US tax laws)

Why doesn't Newton's third law mean a person bounces back to where they started when they hit the ground?

Has the BBC provided arguments for saying Brexit being cancelled is unlikely?

Why are electrically insulating heatsinks so rare? Is it just cost?

The use of multiple foreign keys on same column in SQL Server

What's the point of deactivating Num Lock on login screens?



Eigenvalues of $2$ symmetric $4times 4$ matrices: why is one negative of the other?


If the eigenvalues are distinct then the eigenspaces are all one dimensionalCongruence of invertible skew symmetric matricesEigenvalues of a general block hermitian matrixEigenvalues of Overlapping block diagonal matricesHow to find a symmetric matrix that transforms one ellipsoid to another?The matrix of an endomorphismA conjecture regarding the eigenvalues of real symmetric matricesProve that the span of $M_1, M_2, M_3$ is the set of all symmetric $2times2$ matrices.Looking for properties of, or formulae for eigenvalues of a symmetric matrix reminiscent of Toeplitz matricesDo hermitian matrices commute when they occupy they same elements but have different values?













2












$begingroup$


Consider the following symmetric matrix:



$$
M_0 =
beginpmatrix
0 & 1 & 2 & 0 \
1 & 0 & 4 & 3 \
2 & 4 & 0 & 1 \
0 & 3 & 1 & 0
endpmatrix
$$



and a very similar matrix:



$$
M_1 =
beginpmatrix
0 & 1 & 2 & 0 \
1 & 0 & -4 & 3 \
2 & -4 & 0 & 1 \
0 & 3 & 1 & 0
endpmatrix
$$



To my surprise, the eigenspectrum of $M_0$ and $(-M_1)$ are the same! Why would this be the case?



I also tried playing around with the values a little; for example, if the center block is $beginpmatrix1 & pm 4 \ pm 4 & 1endpmatrix$ instead, then they do not share the same eigenvalues.




Context: I was considering the Hermitian matrix of this form ($M_2$ below) and noted that this has the same property as the matrix $M_0$ from above. Thus, presumably, it has nothing to do with the fact that the middle block is complex.



$$
M_2 =
beginpmatrix
0 & 1 & 2 & 0 \
1 & 0 & e^ix & 3 \
2 & e^-ix & 0 & 1 \
0 & 3 & 1 & 0
endpmatrix
$$



ps. I will accept any answer which explains the phenomenon between the real matrices. I think that would give a hint as to why $M_2$ / Hermitian matrices have the same property.



Thanks.










share|cite|improve this question











$endgroup$











  • $begingroup$
    It's because of all the conveniently placed zeroes.
    $endgroup$
    – M. Vinay
    38 mins ago










  • $begingroup$
    @M.Vinay Yes, seems that way. Is there a name for such matrices or any property sticking out to you right now which would explain why this is true for symmetric matrices of this kind?
    $endgroup$
    – Troy
    35 mins ago






  • 1




    $begingroup$
    In my answer as currently written, I've shown that this holds for a slightly more general case (the matrix doesn't have to be symmetric/Hermitian, and may be real or complex). But I'd like to generalise still further, to higher orders. And also try to find a more big-picture explanation, as you say.
    $endgroup$
    – M. Vinay
    21 mins ago






  • 2




    $begingroup$
    In case this helps: this would be "hollow" (zeroes at the diagonal) "pentadiagonal" or "band" symmetric matrix.
    $endgroup$
    – leonbloy
    21 mins ago










  • $begingroup$
    @leonbloy that certainly narrows down the search for me, thanks for the input!
    $endgroup$
    – Troy
    19 mins ago















2












$begingroup$


Consider the following symmetric matrix:



$$
M_0 =
beginpmatrix
0 & 1 & 2 & 0 \
1 & 0 & 4 & 3 \
2 & 4 & 0 & 1 \
0 & 3 & 1 & 0
endpmatrix
$$



and a very similar matrix:



$$
M_1 =
beginpmatrix
0 & 1 & 2 & 0 \
1 & 0 & -4 & 3 \
2 & -4 & 0 & 1 \
0 & 3 & 1 & 0
endpmatrix
$$



To my surprise, the eigenspectrum of $M_0$ and $(-M_1)$ are the same! Why would this be the case?



I also tried playing around with the values a little; for example, if the center block is $beginpmatrix1 & pm 4 \ pm 4 & 1endpmatrix$ instead, then they do not share the same eigenvalues.




Context: I was considering the Hermitian matrix of this form ($M_2$ below) and noted that this has the same property as the matrix $M_0$ from above. Thus, presumably, it has nothing to do with the fact that the middle block is complex.



$$
M_2 =
beginpmatrix
0 & 1 & 2 & 0 \
1 & 0 & e^ix & 3 \
2 & e^-ix & 0 & 1 \
0 & 3 & 1 & 0
endpmatrix
$$



ps. I will accept any answer which explains the phenomenon between the real matrices. I think that would give a hint as to why $M_2$ / Hermitian matrices have the same property.



Thanks.










share|cite|improve this question











$endgroup$











  • $begingroup$
    It's because of all the conveniently placed zeroes.
    $endgroup$
    – M. Vinay
    38 mins ago










  • $begingroup$
    @M.Vinay Yes, seems that way. Is there a name for such matrices or any property sticking out to you right now which would explain why this is true for symmetric matrices of this kind?
    $endgroup$
    – Troy
    35 mins ago






  • 1




    $begingroup$
    In my answer as currently written, I've shown that this holds for a slightly more general case (the matrix doesn't have to be symmetric/Hermitian, and may be real or complex). But I'd like to generalise still further, to higher orders. And also try to find a more big-picture explanation, as you say.
    $endgroup$
    – M. Vinay
    21 mins ago






  • 2




    $begingroup$
    In case this helps: this would be "hollow" (zeroes at the diagonal) "pentadiagonal" or "band" symmetric matrix.
    $endgroup$
    – leonbloy
    21 mins ago










  • $begingroup$
    @leonbloy that certainly narrows down the search for me, thanks for the input!
    $endgroup$
    – Troy
    19 mins ago













2












2








2


1



$begingroup$


Consider the following symmetric matrix:



$$
M_0 =
beginpmatrix
0 & 1 & 2 & 0 \
1 & 0 & 4 & 3 \
2 & 4 & 0 & 1 \
0 & 3 & 1 & 0
endpmatrix
$$



and a very similar matrix:



$$
M_1 =
beginpmatrix
0 & 1 & 2 & 0 \
1 & 0 & -4 & 3 \
2 & -4 & 0 & 1 \
0 & 3 & 1 & 0
endpmatrix
$$



To my surprise, the eigenspectrum of $M_0$ and $(-M_1)$ are the same! Why would this be the case?



I also tried playing around with the values a little; for example, if the center block is $beginpmatrix1 & pm 4 \ pm 4 & 1endpmatrix$ instead, then they do not share the same eigenvalues.




Context: I was considering the Hermitian matrix of this form ($M_2$ below) and noted that this has the same property as the matrix $M_0$ from above. Thus, presumably, it has nothing to do with the fact that the middle block is complex.



$$
M_2 =
beginpmatrix
0 & 1 & 2 & 0 \
1 & 0 & e^ix & 3 \
2 & e^-ix & 0 & 1 \
0 & 3 & 1 & 0
endpmatrix
$$



ps. I will accept any answer which explains the phenomenon between the real matrices. I think that would give a hint as to why $M_2$ / Hermitian matrices have the same property.



Thanks.










share|cite|improve this question











$endgroup$




Consider the following symmetric matrix:



$$
M_0 =
beginpmatrix
0 & 1 & 2 & 0 \
1 & 0 & 4 & 3 \
2 & 4 & 0 & 1 \
0 & 3 & 1 & 0
endpmatrix
$$



and a very similar matrix:



$$
M_1 =
beginpmatrix
0 & 1 & 2 & 0 \
1 & 0 & -4 & 3 \
2 & -4 & 0 & 1 \
0 & 3 & 1 & 0
endpmatrix
$$



To my surprise, the eigenspectrum of $M_0$ and $(-M_1)$ are the same! Why would this be the case?



I also tried playing around with the values a little; for example, if the center block is $beginpmatrix1 & pm 4 \ pm 4 & 1endpmatrix$ instead, then they do not share the same eigenvalues.




Context: I was considering the Hermitian matrix of this form ($M_2$ below) and noted that this has the same property as the matrix $M_0$ from above. Thus, presumably, it has nothing to do with the fact that the middle block is complex.



$$
M_2 =
beginpmatrix
0 & 1 & 2 & 0 \
1 & 0 & e^ix & 3 \
2 & e^-ix & 0 & 1 \
0 & 3 & 1 & 0
endpmatrix
$$



ps. I will accept any answer which explains the phenomenon between the real matrices. I think that would give a hint as to why $M_2$ / Hermitian matrices have the same property.



Thanks.







linear-algebra matrices eigenvalues-eigenvectors symmetric-matrices






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 9 mins ago









YuiTo Cheng

2,2734937




2,2734937










asked 1 hour ago









TroyTroy

4231519




4231519











  • $begingroup$
    It's because of all the conveniently placed zeroes.
    $endgroup$
    – M. Vinay
    38 mins ago










  • $begingroup$
    @M.Vinay Yes, seems that way. Is there a name for such matrices or any property sticking out to you right now which would explain why this is true for symmetric matrices of this kind?
    $endgroup$
    – Troy
    35 mins ago






  • 1




    $begingroup$
    In my answer as currently written, I've shown that this holds for a slightly more general case (the matrix doesn't have to be symmetric/Hermitian, and may be real or complex). But I'd like to generalise still further, to higher orders. And also try to find a more big-picture explanation, as you say.
    $endgroup$
    – M. Vinay
    21 mins ago






  • 2




    $begingroup$
    In case this helps: this would be "hollow" (zeroes at the diagonal) "pentadiagonal" or "band" symmetric matrix.
    $endgroup$
    – leonbloy
    21 mins ago










  • $begingroup$
    @leonbloy that certainly narrows down the search for me, thanks for the input!
    $endgroup$
    – Troy
    19 mins ago
















  • $begingroup$
    It's because of all the conveniently placed zeroes.
    $endgroup$
    – M. Vinay
    38 mins ago










  • $begingroup$
    @M.Vinay Yes, seems that way. Is there a name for such matrices or any property sticking out to you right now which would explain why this is true for symmetric matrices of this kind?
    $endgroup$
    – Troy
    35 mins ago






  • 1




    $begingroup$
    In my answer as currently written, I've shown that this holds for a slightly more general case (the matrix doesn't have to be symmetric/Hermitian, and may be real or complex). But I'd like to generalise still further, to higher orders. And also try to find a more big-picture explanation, as you say.
    $endgroup$
    – M. Vinay
    21 mins ago






  • 2




    $begingroup$
    In case this helps: this would be "hollow" (zeroes at the diagonal) "pentadiagonal" or "band" symmetric matrix.
    $endgroup$
    – leonbloy
    21 mins ago










  • $begingroup$
    @leonbloy that certainly narrows down the search for me, thanks for the input!
    $endgroup$
    – Troy
    19 mins ago















$begingroup$
It's because of all the conveniently placed zeroes.
$endgroup$
– M. Vinay
38 mins ago




$begingroup$
It's because of all the conveniently placed zeroes.
$endgroup$
– M. Vinay
38 mins ago












$begingroup$
@M.Vinay Yes, seems that way. Is there a name for such matrices or any property sticking out to you right now which would explain why this is true for symmetric matrices of this kind?
$endgroup$
– Troy
35 mins ago




$begingroup$
@M.Vinay Yes, seems that way. Is there a name for such matrices or any property sticking out to you right now which would explain why this is true for symmetric matrices of this kind?
$endgroup$
– Troy
35 mins ago




1




1




$begingroup$
In my answer as currently written, I've shown that this holds for a slightly more general case (the matrix doesn't have to be symmetric/Hermitian, and may be real or complex). But I'd like to generalise still further, to higher orders. And also try to find a more big-picture explanation, as you say.
$endgroup$
– M. Vinay
21 mins ago




$begingroup$
In my answer as currently written, I've shown that this holds for a slightly more general case (the matrix doesn't have to be symmetric/Hermitian, and may be real or complex). But I'd like to generalise still further, to higher orders. And also try to find a more big-picture explanation, as you say.
$endgroup$
– M. Vinay
21 mins ago




2




2




$begingroup$
In case this helps: this would be "hollow" (zeroes at the diagonal) "pentadiagonal" or "band" symmetric matrix.
$endgroup$
– leonbloy
21 mins ago




$begingroup$
In case this helps: this would be "hollow" (zeroes at the diagonal) "pentadiagonal" or "band" symmetric matrix.
$endgroup$
– leonbloy
21 mins ago












$begingroup$
@leonbloy that certainly narrows down the search for me, thanks for the input!
$endgroup$
– Troy
19 mins ago




$begingroup$
@leonbloy that certainly narrows down the search for me, thanks for the input!
$endgroup$
– Troy
19 mins ago










3 Answers
3






active

oldest

votes


















4












$begingroup$

$$-M_1=D^-1M_0D$$
where $D=D^-1$ is the diagonal matrix with diagonal entries $(-1,1,1,-1)$.
Therefore $M_0$ and $-M_1$ are conjugate, and have the same spectrum. This works
because of the zeroes in the corners of $M_0$. In general,
$$pmatrixa_11&a_12&a_13&a_14\
a_21&a_22&a_23&a_24\
a_31&a_32&a_33&a_34\
a_41&a_42&a_43&a_44$$

and
$$-pmatrix-a_11&a_12&a_13&-a_14\
a_21&-a_22&-a_23&a_24\
a_31&-a_32&-a_33&a_34\
-a_41&-_42&a_43&-a_44$$

are conjugate, for precisely the same reason.






share|cite|improve this answer









$endgroup$








  • 1




    $begingroup$
    Of course, signature matrix. This is the answer.
    $endgroup$
    – M. Vinay
    13 mins ago










  • $begingroup$
    okay, this is amazing.. (there's a small typo on the last line of the matrix, I can't edit since it's <6 characters long)
    $endgroup$
    – Troy
    7 mins ago



















2












$begingroup$

This is happening because of the somewhat special pattern of zeroes in this matrix. Edit: No it's not. It has everything to do with signature matrices instead, as shown in the other answer.



Let $$M_1 = beginbmatrix0 & a_2 & a_3 & 0\b_1 & 0 & b_3 & b_4\c_1 & c_2 & 0 & c_4\0 & d_2 & d_3 & 0endbmatrix, quad M_2 = beginbmatrix0 & a_2 & a_3 & 0\b_1 & 0 & -b_3 & b_4\c_1 & -c_2 & 0 & c_4\0 & d_2 & d_3 & 0endbmatrix$$



Let $(lambda, x)$ be an eigenvalue-eigenvector pair of $M_1$, where
$x = beginbmatrixx_1 & x_2 & x_3 & x_4endbmatrix^T$.
Then we can show that
$beginbmatrixx_1 & -x_2 & -x_3 & x_4endbmatrix^T$
is an eigenvector corresponding to eigenvalue $-lambda$ for $M_2$.



For,
beginalign*
a_2 x_2 + a_3 x_3 = lambda x_1 & implies a_2 (-x_2) + a_3(-x_3) = -lambda x_1\
b_1 x_1 + b_3 x_3 + b_4 x_4 = lambda x_2 & implies b_1 x_1 - b_3(-x_3) + b_4x_4 = (-lambda)(-x_2).
endalign*

And the cases of the third and fourth rows are obviously similar.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    oh this is promising. let me mull on this a little before I accept. thanks!
    $endgroup$
    – Troy
    21 mins ago










  • $begingroup$
    The would imply that the property has no obvious generalization for larger sizes, no?
    $endgroup$
    – leonbloy
    19 mins ago










  • $begingroup$
    @leonbloy I think it can be done with careful placement of zeroes, but I don't know if those generalisations would be naturally interesting or too contrived. Probably the latter.
    $endgroup$
    – M. Vinay
    16 mins ago


















1












$begingroup$

I'm not sure if what follows is the type of thing you're looking for, but maybe you'll find this useful.



Consider the matrix
$$
M_a =
left[beginarrayrrrr
0 & 1 & 2 & 0 \
1 & 0 & a & 3 \
2 & a & 0 & 1 \
0 & 3 & 1 & 0
endarrayright]
$$

The characteristic polynomials of $M_a$ and $M_-a$ are
beginalign*
chi_M_a(t)
&= t^4 - left(a^2 + 15right) t^2 - 10 , a t + 25 \
chi_M_-a(t)
&= t^4 - left(a^2 + 15right) t^2 + 10 , a t + 25
endalign*

Now, note that $lambda$ is an eigenvalue of $M_a$ if and only if
beginalign*
0
&= chi_M_a(t) \
&= lambda^4 - left(a^2 + 15right) lambda^2 - 10 , a lambda + 25\
&= (-lambda)^4 - left(a^2 + 15right) (-lambda)^2 + 10 , a (-lambda) + 25 \
&= chi_M_-a(-lambda)
endalign*

This proves that $M_a$ and $M_-a$ have eigenvalues related by negation.



Now, suppose that $M$ instead takes the form
$$
M_a+bi=left[beginarrayrrrr
0 & 1 & 2 & 0 \
1 & 0 & a + i , b & 3 \
2 & a - i , b & 0 & 1 \
0 & 3 & 1 & 0
endarrayright]
$$

In this case, the characteristic polynomials of $M_a+bi$ and $M_-a+bi$ are
beginalign*
chi_M_a+bi(t)
&= t^4 + left(-a^2 - b^2 - 15right) t^2 - 10 , a t + 25 \
chi_M_-a+bi(t)
&= t^4 + left(-a^2 - b^2 - 15right) t^2 + 10 , a t + 25
endalign*

A similiar argument then shows that $M_a+bi$ and $M_-a+bi$ have eigenvalues related by negation.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    thanks for the attempt; yes this is a tad too "high-level" for my use-case -- I need a slightly more general/abstracted explanation. +1 nonetheless.
    $endgroup$
    – Troy
    26 mins ago










  • $begingroup$
    This does not explain if the property depends on having those non-zero elements.
    $endgroup$
    – leonbloy
    23 mins ago










  • $begingroup$
    @leonbloy I mean, if someone wants to edit the question so that it is more rigorously posed, then we can take a stab at it. As it stands, it's unclear what's actually being asked here.
    $endgroup$
    – Brian Fitzpatrick
    18 mins ago











Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3177640%2feigenvalues-of-2-symmetric-4-times-4-matrices-why-is-one-negative-of-the-ot%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























3 Answers
3






active

oldest

votes








3 Answers
3






active

oldest

votes









active

oldest

votes






active

oldest

votes









4












$begingroup$

$$-M_1=D^-1M_0D$$
where $D=D^-1$ is the diagonal matrix with diagonal entries $(-1,1,1,-1)$.
Therefore $M_0$ and $-M_1$ are conjugate, and have the same spectrum. This works
because of the zeroes in the corners of $M_0$. In general,
$$pmatrixa_11&a_12&a_13&a_14\
a_21&a_22&a_23&a_24\
a_31&a_32&a_33&a_34\
a_41&a_42&a_43&a_44$$

and
$$-pmatrix-a_11&a_12&a_13&-a_14\
a_21&-a_22&-a_23&a_24\
a_31&-a_32&-a_33&a_34\
-a_41&-_42&a_43&-a_44$$

are conjugate, for precisely the same reason.






share|cite|improve this answer









$endgroup$








  • 1




    $begingroup$
    Of course, signature matrix. This is the answer.
    $endgroup$
    – M. Vinay
    13 mins ago










  • $begingroup$
    okay, this is amazing.. (there's a small typo on the last line of the matrix, I can't edit since it's <6 characters long)
    $endgroup$
    – Troy
    7 mins ago
















4












$begingroup$

$$-M_1=D^-1M_0D$$
where $D=D^-1$ is the diagonal matrix with diagonal entries $(-1,1,1,-1)$.
Therefore $M_0$ and $-M_1$ are conjugate, and have the same spectrum. This works
because of the zeroes in the corners of $M_0$. In general,
$$pmatrixa_11&a_12&a_13&a_14\
a_21&a_22&a_23&a_24\
a_31&a_32&a_33&a_34\
a_41&a_42&a_43&a_44$$

and
$$-pmatrix-a_11&a_12&a_13&-a_14\
a_21&-a_22&-a_23&a_24\
a_31&-a_32&-a_33&a_34\
-a_41&-_42&a_43&-a_44$$

are conjugate, for precisely the same reason.






share|cite|improve this answer









$endgroup$








  • 1




    $begingroup$
    Of course, signature matrix. This is the answer.
    $endgroup$
    – M. Vinay
    13 mins ago










  • $begingroup$
    okay, this is amazing.. (there's a small typo on the last line of the matrix, I can't edit since it's <6 characters long)
    $endgroup$
    – Troy
    7 mins ago














4












4








4





$begingroup$

$$-M_1=D^-1M_0D$$
where $D=D^-1$ is the diagonal matrix with diagonal entries $(-1,1,1,-1)$.
Therefore $M_0$ and $-M_1$ are conjugate, and have the same spectrum. This works
because of the zeroes in the corners of $M_0$. In general,
$$pmatrixa_11&a_12&a_13&a_14\
a_21&a_22&a_23&a_24\
a_31&a_32&a_33&a_34\
a_41&a_42&a_43&a_44$$

and
$$-pmatrix-a_11&a_12&a_13&-a_14\
a_21&-a_22&-a_23&a_24\
a_31&-a_32&-a_33&a_34\
-a_41&-_42&a_43&-a_44$$

are conjugate, for precisely the same reason.






share|cite|improve this answer









$endgroup$



$$-M_1=D^-1M_0D$$
where $D=D^-1$ is the diagonal matrix with diagonal entries $(-1,1,1,-1)$.
Therefore $M_0$ and $-M_1$ are conjugate, and have the same spectrum. This works
because of the zeroes in the corners of $M_0$. In general,
$$pmatrixa_11&a_12&a_13&a_14\
a_21&a_22&a_23&a_24\
a_31&a_32&a_33&a_34\
a_41&a_42&a_43&a_44$$

and
$$-pmatrix-a_11&a_12&a_13&-a_14\
a_21&-a_22&-a_23&a_24\
a_31&-a_32&-a_33&a_34\
-a_41&-_42&a_43&-a_44$$

are conjugate, for precisely the same reason.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered 16 mins ago









Lord Shark the UnknownLord Shark the Unknown

108k1162135




108k1162135







  • 1




    $begingroup$
    Of course, signature matrix. This is the answer.
    $endgroup$
    – M. Vinay
    13 mins ago










  • $begingroup$
    okay, this is amazing.. (there's a small typo on the last line of the matrix, I can't edit since it's <6 characters long)
    $endgroup$
    – Troy
    7 mins ago













  • 1




    $begingroup$
    Of course, signature matrix. This is the answer.
    $endgroup$
    – M. Vinay
    13 mins ago










  • $begingroup$
    okay, this is amazing.. (there's a small typo on the last line of the matrix, I can't edit since it's <6 characters long)
    $endgroup$
    – Troy
    7 mins ago








1




1




$begingroup$
Of course, signature matrix. This is the answer.
$endgroup$
– M. Vinay
13 mins ago




$begingroup$
Of course, signature matrix. This is the answer.
$endgroup$
– M. Vinay
13 mins ago












$begingroup$
okay, this is amazing.. (there's a small typo on the last line of the matrix, I can't edit since it's <6 characters long)
$endgroup$
– Troy
7 mins ago





$begingroup$
okay, this is amazing.. (there's a small typo on the last line of the matrix, I can't edit since it's <6 characters long)
$endgroup$
– Troy
7 mins ago












2












$begingroup$

This is happening because of the somewhat special pattern of zeroes in this matrix. Edit: No it's not. It has everything to do with signature matrices instead, as shown in the other answer.



Let $$M_1 = beginbmatrix0 & a_2 & a_3 & 0\b_1 & 0 & b_3 & b_4\c_1 & c_2 & 0 & c_4\0 & d_2 & d_3 & 0endbmatrix, quad M_2 = beginbmatrix0 & a_2 & a_3 & 0\b_1 & 0 & -b_3 & b_4\c_1 & -c_2 & 0 & c_4\0 & d_2 & d_3 & 0endbmatrix$$



Let $(lambda, x)$ be an eigenvalue-eigenvector pair of $M_1$, where
$x = beginbmatrixx_1 & x_2 & x_3 & x_4endbmatrix^T$.
Then we can show that
$beginbmatrixx_1 & -x_2 & -x_3 & x_4endbmatrix^T$
is an eigenvector corresponding to eigenvalue $-lambda$ for $M_2$.



For,
beginalign*
a_2 x_2 + a_3 x_3 = lambda x_1 & implies a_2 (-x_2) + a_3(-x_3) = -lambda x_1\
b_1 x_1 + b_3 x_3 + b_4 x_4 = lambda x_2 & implies b_1 x_1 - b_3(-x_3) + b_4x_4 = (-lambda)(-x_2).
endalign*

And the cases of the third and fourth rows are obviously similar.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    oh this is promising. let me mull on this a little before I accept. thanks!
    $endgroup$
    – Troy
    21 mins ago










  • $begingroup$
    The would imply that the property has no obvious generalization for larger sizes, no?
    $endgroup$
    – leonbloy
    19 mins ago










  • $begingroup$
    @leonbloy I think it can be done with careful placement of zeroes, but I don't know if those generalisations would be naturally interesting or too contrived. Probably the latter.
    $endgroup$
    – M. Vinay
    16 mins ago















2












$begingroup$

This is happening because of the somewhat special pattern of zeroes in this matrix. Edit: No it's not. It has everything to do with signature matrices instead, as shown in the other answer.



Let $$M_1 = beginbmatrix0 & a_2 & a_3 & 0\b_1 & 0 & b_3 & b_4\c_1 & c_2 & 0 & c_4\0 & d_2 & d_3 & 0endbmatrix, quad M_2 = beginbmatrix0 & a_2 & a_3 & 0\b_1 & 0 & -b_3 & b_4\c_1 & -c_2 & 0 & c_4\0 & d_2 & d_3 & 0endbmatrix$$



Let $(lambda, x)$ be an eigenvalue-eigenvector pair of $M_1$, where
$x = beginbmatrixx_1 & x_2 & x_3 & x_4endbmatrix^T$.
Then we can show that
$beginbmatrixx_1 & -x_2 & -x_3 & x_4endbmatrix^T$
is an eigenvector corresponding to eigenvalue $-lambda$ for $M_2$.



For,
beginalign*
a_2 x_2 + a_3 x_3 = lambda x_1 & implies a_2 (-x_2) + a_3(-x_3) = -lambda x_1\
b_1 x_1 + b_3 x_3 + b_4 x_4 = lambda x_2 & implies b_1 x_1 - b_3(-x_3) + b_4x_4 = (-lambda)(-x_2).
endalign*

And the cases of the third and fourth rows are obviously similar.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    oh this is promising. let me mull on this a little before I accept. thanks!
    $endgroup$
    – Troy
    21 mins ago










  • $begingroup$
    The would imply that the property has no obvious generalization for larger sizes, no?
    $endgroup$
    – leonbloy
    19 mins ago










  • $begingroup$
    @leonbloy I think it can be done with careful placement of zeroes, but I don't know if those generalisations would be naturally interesting or too contrived. Probably the latter.
    $endgroup$
    – M. Vinay
    16 mins ago













2












2








2





$begingroup$

This is happening because of the somewhat special pattern of zeroes in this matrix. Edit: No it's not. It has everything to do with signature matrices instead, as shown in the other answer.



Let $$M_1 = beginbmatrix0 & a_2 & a_3 & 0\b_1 & 0 & b_3 & b_4\c_1 & c_2 & 0 & c_4\0 & d_2 & d_3 & 0endbmatrix, quad M_2 = beginbmatrix0 & a_2 & a_3 & 0\b_1 & 0 & -b_3 & b_4\c_1 & -c_2 & 0 & c_4\0 & d_2 & d_3 & 0endbmatrix$$



Let $(lambda, x)$ be an eigenvalue-eigenvector pair of $M_1$, where
$x = beginbmatrixx_1 & x_2 & x_3 & x_4endbmatrix^T$.
Then we can show that
$beginbmatrixx_1 & -x_2 & -x_3 & x_4endbmatrix^T$
is an eigenvector corresponding to eigenvalue $-lambda$ for $M_2$.



For,
beginalign*
a_2 x_2 + a_3 x_3 = lambda x_1 & implies a_2 (-x_2) + a_3(-x_3) = -lambda x_1\
b_1 x_1 + b_3 x_3 + b_4 x_4 = lambda x_2 & implies b_1 x_1 - b_3(-x_3) + b_4x_4 = (-lambda)(-x_2).
endalign*

And the cases of the third and fourth rows are obviously similar.






share|cite|improve this answer











$endgroup$



This is happening because of the somewhat special pattern of zeroes in this matrix. Edit: No it's not. It has everything to do with signature matrices instead, as shown in the other answer.



Let $$M_1 = beginbmatrix0 & a_2 & a_3 & 0\b_1 & 0 & b_3 & b_4\c_1 & c_2 & 0 & c_4\0 & d_2 & d_3 & 0endbmatrix, quad M_2 = beginbmatrix0 & a_2 & a_3 & 0\b_1 & 0 & -b_3 & b_4\c_1 & -c_2 & 0 & c_4\0 & d_2 & d_3 & 0endbmatrix$$



Let $(lambda, x)$ be an eigenvalue-eigenvector pair of $M_1$, where
$x = beginbmatrixx_1 & x_2 & x_3 & x_4endbmatrix^T$.
Then we can show that
$beginbmatrixx_1 & -x_2 & -x_3 & x_4endbmatrix^T$
is an eigenvector corresponding to eigenvalue $-lambda$ for $M_2$.



For,
beginalign*
a_2 x_2 + a_3 x_3 = lambda x_1 & implies a_2 (-x_2) + a_3(-x_3) = -lambda x_1\
b_1 x_1 + b_3 x_3 + b_4 x_4 = lambda x_2 & implies b_1 x_1 - b_3(-x_3) + b_4x_4 = (-lambda)(-x_2).
endalign*

And the cases of the third and fourth rows are obviously similar.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited 10 mins ago

























answered 25 mins ago









M. VinayM. Vinay

7,33322136




7,33322136











  • $begingroup$
    oh this is promising. let me mull on this a little before I accept. thanks!
    $endgroup$
    – Troy
    21 mins ago










  • $begingroup$
    The would imply that the property has no obvious generalization for larger sizes, no?
    $endgroup$
    – leonbloy
    19 mins ago










  • $begingroup$
    @leonbloy I think it can be done with careful placement of zeroes, but I don't know if those generalisations would be naturally interesting or too contrived. Probably the latter.
    $endgroup$
    – M. Vinay
    16 mins ago
















  • $begingroup$
    oh this is promising. let me mull on this a little before I accept. thanks!
    $endgroup$
    – Troy
    21 mins ago










  • $begingroup$
    The would imply that the property has no obvious generalization for larger sizes, no?
    $endgroup$
    – leonbloy
    19 mins ago










  • $begingroup$
    @leonbloy I think it can be done with careful placement of zeroes, but I don't know if those generalisations would be naturally interesting or too contrived. Probably the latter.
    $endgroup$
    – M. Vinay
    16 mins ago















$begingroup$
oh this is promising. let me mull on this a little before I accept. thanks!
$endgroup$
– Troy
21 mins ago




$begingroup$
oh this is promising. let me mull on this a little before I accept. thanks!
$endgroup$
– Troy
21 mins ago












$begingroup$
The would imply that the property has no obvious generalization for larger sizes, no?
$endgroup$
– leonbloy
19 mins ago




$begingroup$
The would imply that the property has no obvious generalization for larger sizes, no?
$endgroup$
– leonbloy
19 mins ago












$begingroup$
@leonbloy I think it can be done with careful placement of zeroes, but I don't know if those generalisations would be naturally interesting or too contrived. Probably the latter.
$endgroup$
– M. Vinay
16 mins ago




$begingroup$
@leonbloy I think it can be done with careful placement of zeroes, but I don't know if those generalisations would be naturally interesting or too contrived. Probably the latter.
$endgroup$
– M. Vinay
16 mins ago











1












$begingroup$

I'm not sure if what follows is the type of thing you're looking for, but maybe you'll find this useful.



Consider the matrix
$$
M_a =
left[beginarrayrrrr
0 & 1 & 2 & 0 \
1 & 0 & a & 3 \
2 & a & 0 & 1 \
0 & 3 & 1 & 0
endarrayright]
$$

The characteristic polynomials of $M_a$ and $M_-a$ are
beginalign*
chi_M_a(t)
&= t^4 - left(a^2 + 15right) t^2 - 10 , a t + 25 \
chi_M_-a(t)
&= t^4 - left(a^2 + 15right) t^2 + 10 , a t + 25
endalign*

Now, note that $lambda$ is an eigenvalue of $M_a$ if and only if
beginalign*
0
&= chi_M_a(t) \
&= lambda^4 - left(a^2 + 15right) lambda^2 - 10 , a lambda + 25\
&= (-lambda)^4 - left(a^2 + 15right) (-lambda)^2 + 10 , a (-lambda) + 25 \
&= chi_M_-a(-lambda)
endalign*

This proves that $M_a$ and $M_-a$ have eigenvalues related by negation.



Now, suppose that $M$ instead takes the form
$$
M_a+bi=left[beginarrayrrrr
0 & 1 & 2 & 0 \
1 & 0 & a + i , b & 3 \
2 & a - i , b & 0 & 1 \
0 & 3 & 1 & 0
endarrayright]
$$

In this case, the characteristic polynomials of $M_a+bi$ and $M_-a+bi$ are
beginalign*
chi_M_a+bi(t)
&= t^4 + left(-a^2 - b^2 - 15right) t^2 - 10 , a t + 25 \
chi_M_-a+bi(t)
&= t^4 + left(-a^2 - b^2 - 15right) t^2 + 10 , a t + 25
endalign*

A similiar argument then shows that $M_a+bi$ and $M_-a+bi$ have eigenvalues related by negation.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    thanks for the attempt; yes this is a tad too "high-level" for my use-case -- I need a slightly more general/abstracted explanation. +1 nonetheless.
    $endgroup$
    – Troy
    26 mins ago










  • $begingroup$
    This does not explain if the property depends on having those non-zero elements.
    $endgroup$
    – leonbloy
    23 mins ago










  • $begingroup$
    @leonbloy I mean, if someone wants to edit the question so that it is more rigorously posed, then we can take a stab at it. As it stands, it's unclear what's actually being asked here.
    $endgroup$
    – Brian Fitzpatrick
    18 mins ago















1












$begingroup$

I'm not sure if what follows is the type of thing you're looking for, but maybe you'll find this useful.



Consider the matrix
$$
M_a =
left[beginarrayrrrr
0 & 1 & 2 & 0 \
1 & 0 & a & 3 \
2 & a & 0 & 1 \
0 & 3 & 1 & 0
endarrayright]
$$

The characteristic polynomials of $M_a$ and $M_-a$ are
beginalign*
chi_M_a(t)
&= t^4 - left(a^2 + 15right) t^2 - 10 , a t + 25 \
chi_M_-a(t)
&= t^4 - left(a^2 + 15right) t^2 + 10 , a t + 25
endalign*

Now, note that $lambda$ is an eigenvalue of $M_a$ if and only if
beginalign*
0
&= chi_M_a(t) \
&= lambda^4 - left(a^2 + 15right) lambda^2 - 10 , a lambda + 25\
&= (-lambda)^4 - left(a^2 + 15right) (-lambda)^2 + 10 , a (-lambda) + 25 \
&= chi_M_-a(-lambda)
endalign*

This proves that $M_a$ and $M_-a$ have eigenvalues related by negation.



Now, suppose that $M$ instead takes the form
$$
M_a+bi=left[beginarrayrrrr
0 & 1 & 2 & 0 \
1 & 0 & a + i , b & 3 \
2 & a - i , b & 0 & 1 \
0 & 3 & 1 & 0
endarrayright]
$$

In this case, the characteristic polynomials of $M_a+bi$ and $M_-a+bi$ are
beginalign*
chi_M_a+bi(t)
&= t^4 + left(-a^2 - b^2 - 15right) t^2 - 10 , a t + 25 \
chi_M_-a+bi(t)
&= t^4 + left(-a^2 - b^2 - 15right) t^2 + 10 , a t + 25
endalign*

A similiar argument then shows that $M_a+bi$ and $M_-a+bi$ have eigenvalues related by negation.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    thanks for the attempt; yes this is a tad too "high-level" for my use-case -- I need a slightly more general/abstracted explanation. +1 nonetheless.
    $endgroup$
    – Troy
    26 mins ago










  • $begingroup$
    This does not explain if the property depends on having those non-zero elements.
    $endgroup$
    – leonbloy
    23 mins ago










  • $begingroup$
    @leonbloy I mean, if someone wants to edit the question so that it is more rigorously posed, then we can take a stab at it. As it stands, it's unclear what's actually being asked here.
    $endgroup$
    – Brian Fitzpatrick
    18 mins ago













1












1








1





$begingroup$

I'm not sure if what follows is the type of thing you're looking for, but maybe you'll find this useful.



Consider the matrix
$$
M_a =
left[beginarrayrrrr
0 & 1 & 2 & 0 \
1 & 0 & a & 3 \
2 & a & 0 & 1 \
0 & 3 & 1 & 0
endarrayright]
$$

The characteristic polynomials of $M_a$ and $M_-a$ are
beginalign*
chi_M_a(t)
&= t^4 - left(a^2 + 15right) t^2 - 10 , a t + 25 \
chi_M_-a(t)
&= t^4 - left(a^2 + 15right) t^2 + 10 , a t + 25
endalign*

Now, note that $lambda$ is an eigenvalue of $M_a$ if and only if
beginalign*
0
&= chi_M_a(t) \
&= lambda^4 - left(a^2 + 15right) lambda^2 - 10 , a lambda + 25\
&= (-lambda)^4 - left(a^2 + 15right) (-lambda)^2 + 10 , a (-lambda) + 25 \
&= chi_M_-a(-lambda)
endalign*

This proves that $M_a$ and $M_-a$ have eigenvalues related by negation.



Now, suppose that $M$ instead takes the form
$$
M_a+bi=left[beginarrayrrrr
0 & 1 & 2 & 0 \
1 & 0 & a + i , b & 3 \
2 & a - i , b & 0 & 1 \
0 & 3 & 1 & 0
endarrayright]
$$

In this case, the characteristic polynomials of $M_a+bi$ and $M_-a+bi$ are
beginalign*
chi_M_a+bi(t)
&= t^4 + left(-a^2 - b^2 - 15right) t^2 - 10 , a t + 25 \
chi_M_-a+bi(t)
&= t^4 + left(-a^2 - b^2 - 15right) t^2 + 10 , a t + 25
endalign*

A similiar argument then shows that $M_a+bi$ and $M_-a+bi$ have eigenvalues related by negation.






share|cite|improve this answer











$endgroup$



I'm not sure if what follows is the type of thing you're looking for, but maybe you'll find this useful.



Consider the matrix
$$
M_a =
left[beginarrayrrrr
0 & 1 & 2 & 0 \
1 & 0 & a & 3 \
2 & a & 0 & 1 \
0 & 3 & 1 & 0
endarrayright]
$$

The characteristic polynomials of $M_a$ and $M_-a$ are
beginalign*
chi_M_a(t)
&= t^4 - left(a^2 + 15right) t^2 - 10 , a t + 25 \
chi_M_-a(t)
&= t^4 - left(a^2 + 15right) t^2 + 10 , a t + 25
endalign*

Now, note that $lambda$ is an eigenvalue of $M_a$ if and only if
beginalign*
0
&= chi_M_a(t) \
&= lambda^4 - left(a^2 + 15right) lambda^2 - 10 , a lambda + 25\
&= (-lambda)^4 - left(a^2 + 15right) (-lambda)^2 + 10 , a (-lambda) + 25 \
&= chi_M_-a(-lambda)
endalign*

This proves that $M_a$ and $M_-a$ have eigenvalues related by negation.



Now, suppose that $M$ instead takes the form
$$
M_a+bi=left[beginarrayrrrr
0 & 1 & 2 & 0 \
1 & 0 & a + i , b & 3 \
2 & a - i , b & 0 & 1 \
0 & 3 & 1 & 0
endarrayright]
$$

In this case, the characteristic polynomials of $M_a+bi$ and $M_-a+bi$ are
beginalign*
chi_M_a+bi(t)
&= t^4 + left(-a^2 - b^2 - 15right) t^2 - 10 , a t + 25 \
chi_M_-a+bi(t)
&= t^4 + left(-a^2 - b^2 - 15right) t^2 + 10 , a t + 25
endalign*

A similiar argument then shows that $M_a+bi$ and $M_-a+bi$ have eigenvalues related by negation.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited 24 mins ago

























answered 33 mins ago









Brian FitzpatrickBrian Fitzpatrick

21.8k42959




21.8k42959











  • $begingroup$
    thanks for the attempt; yes this is a tad too "high-level" for my use-case -- I need a slightly more general/abstracted explanation. +1 nonetheless.
    $endgroup$
    – Troy
    26 mins ago










  • $begingroup$
    This does not explain if the property depends on having those non-zero elements.
    $endgroup$
    – leonbloy
    23 mins ago










  • $begingroup$
    @leonbloy I mean, if someone wants to edit the question so that it is more rigorously posed, then we can take a stab at it. As it stands, it's unclear what's actually being asked here.
    $endgroup$
    – Brian Fitzpatrick
    18 mins ago
















  • $begingroup$
    thanks for the attempt; yes this is a tad too "high-level" for my use-case -- I need a slightly more general/abstracted explanation. +1 nonetheless.
    $endgroup$
    – Troy
    26 mins ago










  • $begingroup$
    This does not explain if the property depends on having those non-zero elements.
    $endgroup$
    – leonbloy
    23 mins ago










  • $begingroup$
    @leonbloy I mean, if someone wants to edit the question so that it is more rigorously posed, then we can take a stab at it. As it stands, it's unclear what's actually being asked here.
    $endgroup$
    – Brian Fitzpatrick
    18 mins ago















$begingroup$
thanks for the attempt; yes this is a tad too "high-level" for my use-case -- I need a slightly more general/abstracted explanation. +1 nonetheless.
$endgroup$
– Troy
26 mins ago




$begingroup$
thanks for the attempt; yes this is a tad too "high-level" for my use-case -- I need a slightly more general/abstracted explanation. +1 nonetheless.
$endgroup$
– Troy
26 mins ago












$begingroup$
This does not explain if the property depends on having those non-zero elements.
$endgroup$
– leonbloy
23 mins ago




$begingroup$
This does not explain if the property depends on having those non-zero elements.
$endgroup$
– leonbloy
23 mins ago












$begingroup$
@leonbloy I mean, if someone wants to edit the question so that it is more rigorously posed, then we can take a stab at it. As it stands, it's unclear what's actually being asked here.
$endgroup$
– Brian Fitzpatrick
18 mins ago




$begingroup$
@leonbloy I mean, if someone wants to edit the question so that it is more rigorously posed, then we can take a stab at it. As it stands, it's unclear what's actually being asked here.
$endgroup$
– Brian Fitzpatrick
18 mins ago

















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3177640%2feigenvalues-of-2-symmetric-4-times-4-matrices-why-is-one-negative-of-the-ot%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

名間水力發電廠 目录 沿革 設施 鄰近設施 註釋 外部連結 导航菜单23°50′10″N 120°42′41″E / 23.83611°N 120.71139°E / 23.83611; 120.7113923°50′10″N 120°42′41″E / 23.83611°N 120.71139°E / 23.83611; 120.71139計畫概要原始内容臺灣第一座BOT 模式開發的水力發電廠-名間水力電廠名間水力發電廠 水利署首件BOT案原始内容《小檔案》名間電廠 首座BOT水力發電廠原始内容名間電廠BOT - 經濟部水利署中區水資源局

Prove that NP is closed under karp reduction?Space(n) not closed under Karp reductions - what about NTime(n)?Class P is closed under rotation?Prove or disprove that $NL$ is closed under polynomial many-one reductions$mathbfNC_2$ is closed under log-space reductionOn Karp reductionwhen can I know if a class (complexity) is closed under reduction (cook/karp)Check if class $PSPACE$ is closed under polyonomially space reductionIs NPSPACE also closed under polynomial-time reduction and under log-space reduction?Prove PSPACE is closed under complement?Prove PSPACE is closed under union?

Is my guitar’s action too high? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Strings too stiff on a recently purchased acoustic guitar | Cort AD880CEIs the action of my guitar really high?Μy little finger is too weak to play guitarWith guitar, how long should I give my fingers to strengthen / callous?When playing a fret the guitar sounds mutedPlaying (Barre) chords up the guitar neckI think my guitar strings are wound too tight and I can't play barre chordsF barre chord on an SG guitarHow to find to the right strings of a barre chord by feel?High action on higher fret on my steel acoustic guitar