Why dont electromagnetic waves interact with each other?Gravitational lensing or cloud refraction?Electromagnetic RadiationWhy don't electromagnetic waves require a medium?How do mirrors work?What is light, and how can it travel in a vacuum forever in all directions at once without a medium?Can we explain Huygens' principle taking into account Maxwell's predictions?How do electromagnetic waves travel in a vacuum?Is the wobbly rope depiction of a radio wave inherently wrong? And how do vectors of parallel waves align with each other?Electromagnetic tensor propagation?Double slit experiment and electromagnetic waves

Multi tool use
Multi tool use

Is it important to consider tone, melody, and musical form while writing a song?

How to find program name(s) of an installed package?

Can I make popcorn with any corn?

Do VLANs within a subnet need to have their own subnet for router on a stick?

How could an uplifted falcon's brain work?

Do I have a twin with permutated remainders?

Is it possible to do 50 km distance without any previous training?

Accidentally leaked the solution to an assignment, what to do now? (I'm the prof)

How does strength of boric acid solution increase in presence of salicylic acid?

Prove that NP is closed under karp reduction?

Mage Armor with Defense fighting style (for Adventurers League bladeslinger)

What do you call a Matrix-like slowdown and camera movement effect?

In Japanese, what’s the difference between “Tonari ni” (となりに) and “Tsugi” (つぎ)? When would you use one over the other?

Can I ask the recruiters in my resume to put the reason why I am rejected?

Why Is Death Allowed In the Matrix?

How is the claim "I am in New York only if I am in America" the same as "If I am in New York, then I am in America?

Risk of getting Chronic Wasting Disease (CWD) in the United States?

Languages that we cannot (dis)prove to be Context-Free

How is it possible to have an ability score that is less than 3?

What is the offset in a seaplane's hull?

Email Account under attack (really) - anything I can do?

Fencing style for blades that can attack from a distance

What do the dots in this tr command do: tr .............A-Z A-ZA-Z <<< "JVPQBOV" (with 13 dots)

Watching something be written to a file live with tail



Why dont electromagnetic waves interact with each other?


Gravitational lensing or cloud refraction?Electromagnetic RadiationWhy don't electromagnetic waves require a medium?How do mirrors work?What is light, and how can it travel in a vacuum forever in all directions at once without a medium?Can we explain Huygens' principle taking into account Maxwell's predictions?How do electromagnetic waves travel in a vacuum?Is the wobbly rope depiction of a radio wave inherently wrong? And how do vectors of parallel waves align with each other?Electromagnetic tensor propagation?Double slit experiment and electromagnetic waves













1












$begingroup$


My exact question is that what refers to this phenomenon? I saw also richards feynman video in that he talks about light and says that if we look at something those ligh waves that come from that thing are not disturbed from any other electromagnetic waves and explains this kind of way that if i can see things clearly, in front of me, although if someone stand in the right of me, can also clearly see any thing in the left of me, our light waves cross each other but the are not disturbed by each other. This is a kinda cool explanation but i dont understand that exactly, because i am not convinced that if those two electromagnetic waves would interact then i couldnt see the thing in front of me clearly










share|cite|improve this question









$endgroup$
















    1












    $begingroup$


    My exact question is that what refers to this phenomenon? I saw also richards feynman video in that he talks about light and says that if we look at something those ligh waves that come from that thing are not disturbed from any other electromagnetic waves and explains this kind of way that if i can see things clearly, in front of me, although if someone stand in the right of me, can also clearly see any thing in the left of me, our light waves cross each other but the are not disturbed by each other. This is a kinda cool explanation but i dont understand that exactly, because i am not convinced that if those two electromagnetic waves would interact then i couldnt see the thing in front of me clearly










    share|cite|improve this question









    $endgroup$














      1












      1








      1


      1



      $begingroup$


      My exact question is that what refers to this phenomenon? I saw also richards feynman video in that he talks about light and says that if we look at something those ligh waves that come from that thing are not disturbed from any other electromagnetic waves and explains this kind of way that if i can see things clearly, in front of me, although if someone stand in the right of me, can also clearly see any thing in the left of me, our light waves cross each other but the are not disturbed by each other. This is a kinda cool explanation but i dont understand that exactly, because i am not convinced that if those two electromagnetic waves would interact then i couldnt see the thing in front of me clearly










      share|cite|improve this question









      $endgroup$




      My exact question is that what refers to this phenomenon? I saw also richards feynman video in that he talks about light and says that if we look at something those ligh waves that come from that thing are not disturbed from any other electromagnetic waves and explains this kind of way that if i can see things clearly, in front of me, although if someone stand in the right of me, can also clearly see any thing in the left of me, our light waves cross each other but the are not disturbed by each other. This is a kinda cool explanation but i dont understand that exactly, because i am not convinced that if those two electromagnetic waves would interact then i couldnt see the thing in front of me clearly







      electromagnetic-radiation






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 1 hour ago









      Bálint TataiBálint Tatai

      23727




      23727




















          1 Answer
          1






          active

          oldest

          votes


















          3












          $begingroup$

          Here are three explanations of how to understand “why” electromagnetic waves don’t directly interact electromagnetically with each other, which are all equivalent to each other:



          1. Maxwell’s equations are linear in the electric and magnetic fields, and in their sources, so the superposition of two solutions is also a solution. (For example, in Coulomb’s Law you can just add up the fields of multiple charges.)


          2. Photons do not carry any electric charge and do not have their own electromagnetic field. (Note: By contrast, gluons do carry color charge and do interact with each other.)


          3. The gauge group for electromagnetism is an abelian (i.e., commutative) group. (Gauge groups are something you learn about in more advanced physics courses.)


          Notice that I said photons don’t directly interact with each other. They do indirectly interact via virtual electrons and positrons (or other charged particle-antiparticle pairs). Until you get to extremely intense electric and magnetic fields, this is a very tiny effect and was only recently measured.



          An even tinier effect, which we will probably never be able to detect, is the gravitational interaction of electromagnetic waves or photons. Physicists believe there would be a gravitational interaction because electromagnetic waves and photons carry energy and momentum, even though photons are massless.






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "151"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f471007%2fwhy-dont-electromagnetic-waves-interact-with-each-other%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            3












            $begingroup$

            Here are three explanations of how to understand “why” electromagnetic waves don’t directly interact electromagnetically with each other, which are all equivalent to each other:



            1. Maxwell’s equations are linear in the electric and magnetic fields, and in their sources, so the superposition of two solutions is also a solution. (For example, in Coulomb’s Law you can just add up the fields of multiple charges.)


            2. Photons do not carry any electric charge and do not have their own electromagnetic field. (Note: By contrast, gluons do carry color charge and do interact with each other.)


            3. The gauge group for electromagnetism is an abelian (i.e., commutative) group. (Gauge groups are something you learn about in more advanced physics courses.)


            Notice that I said photons don’t directly interact with each other. They do indirectly interact via virtual electrons and positrons (or other charged particle-antiparticle pairs). Until you get to extremely intense electric and magnetic fields, this is a very tiny effect and was only recently measured.



            An even tinier effect, which we will probably never be able to detect, is the gravitational interaction of electromagnetic waves or photons. Physicists believe there would be a gravitational interaction because electromagnetic waves and photons carry energy and momentum, even though photons are massless.






            share|cite|improve this answer











            $endgroup$

















              3












              $begingroup$

              Here are three explanations of how to understand “why” electromagnetic waves don’t directly interact electromagnetically with each other, which are all equivalent to each other:



              1. Maxwell’s equations are linear in the electric and magnetic fields, and in their sources, so the superposition of two solutions is also a solution. (For example, in Coulomb’s Law you can just add up the fields of multiple charges.)


              2. Photons do not carry any electric charge and do not have their own electromagnetic field. (Note: By contrast, gluons do carry color charge and do interact with each other.)


              3. The gauge group for electromagnetism is an abelian (i.e., commutative) group. (Gauge groups are something you learn about in more advanced physics courses.)


              Notice that I said photons don’t directly interact with each other. They do indirectly interact via virtual electrons and positrons (or other charged particle-antiparticle pairs). Until you get to extremely intense electric and magnetic fields, this is a very tiny effect and was only recently measured.



              An even tinier effect, which we will probably never be able to detect, is the gravitational interaction of electromagnetic waves or photons. Physicists believe there would be a gravitational interaction because electromagnetic waves and photons carry energy and momentum, even though photons are massless.






              share|cite|improve this answer











              $endgroup$















                3












                3








                3





                $begingroup$

                Here are three explanations of how to understand “why” electromagnetic waves don’t directly interact electromagnetically with each other, which are all equivalent to each other:



                1. Maxwell’s equations are linear in the electric and magnetic fields, and in their sources, so the superposition of two solutions is also a solution. (For example, in Coulomb’s Law you can just add up the fields of multiple charges.)


                2. Photons do not carry any electric charge and do not have their own electromagnetic field. (Note: By contrast, gluons do carry color charge and do interact with each other.)


                3. The gauge group for electromagnetism is an abelian (i.e., commutative) group. (Gauge groups are something you learn about in more advanced physics courses.)


                Notice that I said photons don’t directly interact with each other. They do indirectly interact via virtual electrons and positrons (or other charged particle-antiparticle pairs). Until you get to extremely intense electric and magnetic fields, this is a very tiny effect and was only recently measured.



                An even tinier effect, which we will probably never be able to detect, is the gravitational interaction of electromagnetic waves or photons. Physicists believe there would be a gravitational interaction because electromagnetic waves and photons carry energy and momentum, even though photons are massless.






                share|cite|improve this answer











                $endgroup$



                Here are three explanations of how to understand “why” electromagnetic waves don’t directly interact electromagnetically with each other, which are all equivalent to each other:



                1. Maxwell’s equations are linear in the electric and magnetic fields, and in their sources, so the superposition of two solutions is also a solution. (For example, in Coulomb’s Law you can just add up the fields of multiple charges.)


                2. Photons do not carry any electric charge and do not have their own electromagnetic field. (Note: By contrast, gluons do carry color charge and do interact with each other.)


                3. The gauge group for electromagnetism is an abelian (i.e., commutative) group. (Gauge groups are something you learn about in more advanced physics courses.)


                Notice that I said photons don’t directly interact with each other. They do indirectly interact via virtual electrons and positrons (or other charged particle-antiparticle pairs). Until you get to extremely intense electric and magnetic fields, this is a very tiny effect and was only recently measured.



                An even tinier effect, which we will probably never be able to detect, is the gravitational interaction of electromagnetic waves or photons. Physicists believe there would be a gravitational interaction because electromagnetic waves and photons carry energy and momentum, even though photons are massless.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited 39 mins ago

























                answered 1 hour ago









                G. SmithG. Smith

                10.5k11430




                10.5k11430



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Physics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f471007%2fwhy-dont-electromagnetic-waves-interact-with-each-other%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    7GtE55H,fr4p5j2TD9Nro0 pH6,cFctCD2WKXA,mch,0 lyPFF8ggI,0 ZaW
                    jgt0mM0ju,TG puD

                    Popular posts from this blog

                    名間水力發電廠 目录 沿革 設施 鄰近設施 註釋 外部連結 导航菜单23°50′10″N 120°42′41″E / 23.83611°N 120.71139°E / 23.83611; 120.7113923°50′10″N 120°42′41″E / 23.83611°N 120.71139°E / 23.83611; 120.71139計畫概要原始内容臺灣第一座BOT 模式開發的水力發電廠-名間水力電廠名間水力發電廠 水利署首件BOT案原始内容《小檔案》名間電廠 首座BOT水力發電廠原始内容名間電廠BOT - 經濟部水利署中區水資源局

                    Prove that NP is closed under karp reduction?Space(n) not closed under Karp reductions - what about NTime(n)?Class P is closed under rotation?Prove or disprove that $NL$ is closed under polynomial many-one reductions$mathbfNC_2$ is closed under log-space reductionOn Karp reductionwhen can I know if a class (complexity) is closed under reduction (cook/karp)Check if class $PSPACE$ is closed under polyonomially space reductionIs NPSPACE also closed under polynomial-time reduction and under log-space reduction?Prove PSPACE is closed under complement?Prove PSPACE is closed under union?

                    Is my guitar’s action too high? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Strings too stiff on a recently purchased acoustic guitar | Cort AD880CEIs the action of my guitar really high?Μy little finger is too weak to play guitarWith guitar, how long should I give my fingers to strengthen / callous?When playing a fret the guitar sounds mutedPlaying (Barre) chords up the guitar neckI think my guitar strings are wound too tight and I can't play barre chordsF barre chord on an SG guitarHow to find to the right strings of a barre chord by feel?High action on higher fret on my steel acoustic guitar