Non-trivial topology where only open sets are closedExhaustion of open sets by closed setsNatural non-trivial topology on $mathbb R$ such that there are more than $2^mathbb N$ open setswhy use open interval rather than closed interval as open sets for real line topologyClosed sets in Noetherian topologyIn the finite complement topology on $mathbbR$, is the subset $ x $ closed?Closed sets in the lower limit topology.Are closed sets in topology?For which topologies are the concepts of open and closed “interchangeable”?How to determine which sets are open in a topology?Inclusion of open sets in closed sets of Zariski topology

How to write cleanly even if my character uses expletive language?

Why one should not leave fingerprints on bulbs and plugs?

Why Choose Less Effective Armour Types?

"of which" is correct here?

How to get the n-th line after a grepped one?

What is the significance behind "40 days" that often appears in the Bible?

Most cost effective thermostat setting: consistent temperature vs. lowest temperature possible

Counting models satisfying a boolean formula

The German vowel “a” changes to the English “i”

How to terminate ping <dest> &

Is it normal that my co-workers at a fitness company criticize my food choices?

How should I state my peer review experience in the CV?

Why do tuner card drivers fail to build after kernel update to 4.4.0-143-generic?

Bach's Toccata and Fugue in D minor breaks the "no parallel octaves" rule?

Recruiter wants very extensive technical details about all of my previous work

Examples of transfinite towers

Professor being mistaken for a grad student

Why does a Star of David appear at a rally with Francisco Franco?

This word with a lot of past tenses

How can we have a quark condensate without a quark potential?

Why is the President allowed to veto a cancellation of emergency powers?

How difficult is it to simply disable/disengage the MCAS on Boeing 737 Max 8 & 9 Aircraft?

How to make healing in an exploration game interesting

Aluminum electrolytic or ceramic capacitors for linear regulator input and output?



Non-trivial topology where only open sets are closed


Exhaustion of open sets by closed setsNatural non-trivial topology on $mathbb R$ such that there are more than $2^mathbb N$ open setswhy use open interval rather than closed interval as open sets for real line topologyClosed sets in Noetherian topologyIn the finite complement topology on $mathbbR$, is the subset $ x $ closed?Closed sets in the lower limit topology.Are closed sets in topology?For which topologies are the concepts of open and closed “interchangeable”?How to determine which sets are open in a topology?Inclusion of open sets in closed sets of Zariski topology













1












$begingroup$


For example, on $mathbbR$ there exists trivial topology which contains only $mathbbR$ and $emptyset$ and in that topology all open sets are closed and all closed sets are open.



Question. Does there exist non trivial topology on $mathbbR$ for which all open sets are closed and all closed sets are open? Further, given some general set $X$ whose number of elements is finite, could we always construct non trival topology where all open sets are closed and all closed sets are open? What if $X$ has non finite number of elements?



I hope my question is not meaningless.



Thank you for any help.










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    The trivial topology on a set $X$ is $emptyset, X$. The discrete topology on a set $X$ is $2^X$. Both have the property that you are looking for, though I am not sure if you are using the term "trivial" here in reference to the trivial topology or just to mean "simple".
    $endgroup$
    – parsiad
    1 hour ago






  • 1




    $begingroup$
    (1) The discrete topology, where all subsets are open and closed. (2) Given any partition $X_i_iin Iof $X$, take as a topology the colleciton of all sets that are unions of elements of the partition; the complements are also unions of elements of the partition. This works for any set, regardless of cardinality, and any partition, regarless of size of the partition or of its constituent sets.
    $endgroup$
    – Arturo Magidin
    1 hour ago






  • 1




    $begingroup$
    Related to your question are door spaces and extremally disconnected spaces.
    $endgroup$
    – William Elliot
    1 hour ago















1












$begingroup$


For example, on $mathbbR$ there exists trivial topology which contains only $mathbbR$ and $emptyset$ and in that topology all open sets are closed and all closed sets are open.



Question. Does there exist non trivial topology on $mathbbR$ for which all open sets are closed and all closed sets are open? Further, given some general set $X$ whose number of elements is finite, could we always construct non trival topology where all open sets are closed and all closed sets are open? What if $X$ has non finite number of elements?



I hope my question is not meaningless.



Thank you for any help.










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    The trivial topology on a set $X$ is $emptyset, X$. The discrete topology on a set $X$ is $2^X$. Both have the property that you are looking for, though I am not sure if you are using the term "trivial" here in reference to the trivial topology or just to mean "simple".
    $endgroup$
    – parsiad
    1 hour ago






  • 1




    $begingroup$
    (1) The discrete topology, where all subsets are open and closed. (2) Given any partition $X_i_iin Iof $X$, take as a topology the colleciton of all sets that are unions of elements of the partition; the complements are also unions of elements of the partition. This works for any set, regardless of cardinality, and any partition, regarless of size of the partition or of its constituent sets.
    $endgroup$
    – Arturo Magidin
    1 hour ago






  • 1




    $begingroup$
    Related to your question are door spaces and extremally disconnected spaces.
    $endgroup$
    – William Elliot
    1 hour ago













1












1








1





$begingroup$


For example, on $mathbbR$ there exists trivial topology which contains only $mathbbR$ and $emptyset$ and in that topology all open sets are closed and all closed sets are open.



Question. Does there exist non trivial topology on $mathbbR$ for which all open sets are closed and all closed sets are open? Further, given some general set $X$ whose number of elements is finite, could we always construct non trival topology where all open sets are closed and all closed sets are open? What if $X$ has non finite number of elements?



I hope my question is not meaningless.



Thank you for any help.










share|cite|improve this question











$endgroup$




For example, on $mathbbR$ there exists trivial topology which contains only $mathbbR$ and $emptyset$ and in that topology all open sets are closed and all closed sets are open.



Question. Does there exist non trivial topology on $mathbbR$ for which all open sets are closed and all closed sets are open? Further, given some general set $X$ whose number of elements is finite, could we always construct non trival topology where all open sets are closed and all closed sets are open? What if $X$ has non finite number of elements?



I hope my question is not meaningless.



Thank you for any help.







general-topology






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 1 hour ago









J. W. Tanner

3,2801320




3,2801320










asked 1 hour ago









ThomThom

341111




341111







  • 2




    $begingroup$
    The trivial topology on a set $X$ is $emptyset, X$. The discrete topology on a set $X$ is $2^X$. Both have the property that you are looking for, though I am not sure if you are using the term "trivial" here in reference to the trivial topology or just to mean "simple".
    $endgroup$
    – parsiad
    1 hour ago






  • 1




    $begingroup$
    (1) The discrete topology, where all subsets are open and closed. (2) Given any partition $X_i_iin Iof $X$, take as a topology the colleciton of all sets that are unions of elements of the partition; the complements are also unions of elements of the partition. This works for any set, regardless of cardinality, and any partition, regarless of size of the partition or of its constituent sets.
    $endgroup$
    – Arturo Magidin
    1 hour ago






  • 1




    $begingroup$
    Related to your question are door spaces and extremally disconnected spaces.
    $endgroup$
    – William Elliot
    1 hour ago












  • 2




    $begingroup$
    The trivial topology on a set $X$ is $emptyset, X$. The discrete topology on a set $X$ is $2^X$. Both have the property that you are looking for, though I am not sure if you are using the term "trivial" here in reference to the trivial topology or just to mean "simple".
    $endgroup$
    – parsiad
    1 hour ago






  • 1




    $begingroup$
    (1) The discrete topology, where all subsets are open and closed. (2) Given any partition $X_i_iin Iof $X$, take as a topology the colleciton of all sets that are unions of elements of the partition; the complements are also unions of elements of the partition. This works for any set, regardless of cardinality, and any partition, regarless of size of the partition or of its constituent sets.
    $endgroup$
    – Arturo Magidin
    1 hour ago






  • 1




    $begingroup$
    Related to your question are door spaces and extremally disconnected spaces.
    $endgroup$
    – William Elliot
    1 hour ago







2




2




$begingroup$
The trivial topology on a set $X$ is $emptyset, X$. The discrete topology on a set $X$ is $2^X$. Both have the property that you are looking for, though I am not sure if you are using the term "trivial" here in reference to the trivial topology or just to mean "simple".
$endgroup$
– parsiad
1 hour ago




$begingroup$
The trivial topology on a set $X$ is $emptyset, X$. The discrete topology on a set $X$ is $2^X$. Both have the property that you are looking for, though I am not sure if you are using the term "trivial" here in reference to the trivial topology or just to mean "simple".
$endgroup$
– parsiad
1 hour ago




1




1




$begingroup$
(1) The discrete topology, where all subsets are open and closed. (2) Given any partition $X_i_iin Iof $X$, take as a topology the colleciton of all sets that are unions of elements of the partition; the complements are also unions of elements of the partition. This works for any set, regardless of cardinality, and any partition, regarless of size of the partition or of its constituent sets.
$endgroup$
– Arturo Magidin
1 hour ago




$begingroup$
(1) The discrete topology, where all subsets are open and closed. (2) Given any partition $X_i_iin Iof $X$, take as a topology the colleciton of all sets that are unions of elements of the partition; the complements are also unions of elements of the partition. This works for any set, regardless of cardinality, and any partition, regarless of size of the partition or of its constituent sets.
$endgroup$
– Arturo Magidin
1 hour ago




1




1




$begingroup$
Related to your question are door spaces and extremally disconnected spaces.
$endgroup$
– William Elliot
1 hour ago




$begingroup$
Related to your question are door spaces and extremally disconnected spaces.
$endgroup$
– William Elliot
1 hour ago










2 Answers
2






active

oldest

votes


















2












$begingroup$

The topologies with this property are precisely the ones that are derived from partitions of the underlying set $X$.



Specifically, let $mathcalP=X_i_iin I$ be a partition of $X$, and let $tau$ be the collection of sets of the form $cup_iin I_0X_i$ for $I_0subseteq I$. Then $tau$ is a topology: the empty set corresponds to $I_0=varnothing$, the set $X$ to $I_0=I$; the union of such sets corresponds to the family indexed by the union of indices, and the intersection to the intersection of the indices. Moreover, the complement of the set corresponding to $I_0$ is the set corresponding to $I-I_0$. Thus, $tau$ has the desired property.



Now let $tau$ be any topology on $X$ with the desired property. Define an equivalence relation on $X$ by letting $xsim y$ if and only if for every $Ain tau$, $xin A$ if and only if $yin A$. Trivially, this is an equivalence relation, and so induces a partition on $X$. I claim that $tau$ is in fact, the topology induced by this partition as above.



Indeed, if $Ain tau$, then $A=cup_xin A[x]$, where $[x]$ is the equivalence class of $x$. Trivially $A$ is contained in the right hand side, and if $yin[x]$, then since $xin A$ then $yin A$, so we have equality.



Now, conversely, let $xin X$ and look at $[x]$. I claim that $X-[x]$ lies in $tau$. So see this, let $zin X-[x]$. Then since $znotin [x]$, there exists an open set $A_zin tau$ such that $zin A_z$ but $xnotin A_z$ (and hence, $[x]cap A_z=varnothing$). Now, $cup_znotin[x]A_z$ is an open set, contains every element of $X-[x]$, and intersects $[x]$ trivially because each element in the union does. That is, this open set is $A-[x]$; but since the complement of every open set is open, and $A-[x]$ is open, then $[x]$ is open. Thus, $[x]intau$.



We have then proven that every element of the partition induced by $sim$ is open, and that every open set is a union of such elements of the partition. That is, the open sets are precisely the unions of elements of the partition $X/sim$.






share|cite|improve this answer









$endgroup$




















    3












    $begingroup$

    You can manufacture examples like this pretty easily. Let $A$ be any subset of $mathbbR$. Put a topology on $mathbbR$ with the following open sets:
    $$
    varnothing, A, mathbbR-A, mathbbR.
    $$

    You can easily check that this always gives a topology, and a subset of $mathbbR$ is open if and only if it is closed. This construction generalizes to any set $X$: there's nothing special about $mathbbR$ here.






    share|cite|improve this answer









    $endgroup$












    • $begingroup$
      More generally, take any partition and take unions of elements of the partition. This example is what you get from the partition $A,mathbbR-A$.
      $endgroup$
      – Arturo Magidin
      1 hour ago










    • $begingroup$
      @ArturoMagidin Let us denote with X set of all topologies which satisfy property in the question on $mathbbR$. Can every topology in $X$ be made with some partitions?
      $endgroup$
      – Thom
      1 hour ago










    • $begingroup$
      @Thom: Yes. I’ll write it up.
      $endgroup$
      – Arturo Magidin
      1 hour ago










    • $begingroup$
      @ArturoMagidin Fascinating. Thank you.
      $endgroup$
      – Thom
      59 mins ago










    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3151030%2fnon-trivial-topology-where-only-open-sets-are-closed%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    The topologies with this property are precisely the ones that are derived from partitions of the underlying set $X$.



    Specifically, let $mathcalP=X_i_iin I$ be a partition of $X$, and let $tau$ be the collection of sets of the form $cup_iin I_0X_i$ for $I_0subseteq I$. Then $tau$ is a topology: the empty set corresponds to $I_0=varnothing$, the set $X$ to $I_0=I$; the union of such sets corresponds to the family indexed by the union of indices, and the intersection to the intersection of the indices. Moreover, the complement of the set corresponding to $I_0$ is the set corresponding to $I-I_0$. Thus, $tau$ has the desired property.



    Now let $tau$ be any topology on $X$ with the desired property. Define an equivalence relation on $X$ by letting $xsim y$ if and only if for every $Ain tau$, $xin A$ if and only if $yin A$. Trivially, this is an equivalence relation, and so induces a partition on $X$. I claim that $tau$ is in fact, the topology induced by this partition as above.



    Indeed, if $Ain tau$, then $A=cup_xin A[x]$, where $[x]$ is the equivalence class of $x$. Trivially $A$ is contained in the right hand side, and if $yin[x]$, then since $xin A$ then $yin A$, so we have equality.



    Now, conversely, let $xin X$ and look at $[x]$. I claim that $X-[x]$ lies in $tau$. So see this, let $zin X-[x]$. Then since $znotin [x]$, there exists an open set $A_zin tau$ such that $zin A_z$ but $xnotin A_z$ (and hence, $[x]cap A_z=varnothing$). Now, $cup_znotin[x]A_z$ is an open set, contains every element of $X-[x]$, and intersects $[x]$ trivially because each element in the union does. That is, this open set is $A-[x]$; but since the complement of every open set is open, and $A-[x]$ is open, then $[x]$ is open. Thus, $[x]intau$.



    We have then proven that every element of the partition induced by $sim$ is open, and that every open set is a union of such elements of the partition. That is, the open sets are precisely the unions of elements of the partition $X/sim$.






    share|cite|improve this answer









    $endgroup$

















      2












      $begingroup$

      The topologies with this property are precisely the ones that are derived from partitions of the underlying set $X$.



      Specifically, let $mathcalP=X_i_iin I$ be a partition of $X$, and let $tau$ be the collection of sets of the form $cup_iin I_0X_i$ for $I_0subseteq I$. Then $tau$ is a topology: the empty set corresponds to $I_0=varnothing$, the set $X$ to $I_0=I$; the union of such sets corresponds to the family indexed by the union of indices, and the intersection to the intersection of the indices. Moreover, the complement of the set corresponding to $I_0$ is the set corresponding to $I-I_0$. Thus, $tau$ has the desired property.



      Now let $tau$ be any topology on $X$ with the desired property. Define an equivalence relation on $X$ by letting $xsim y$ if and only if for every $Ain tau$, $xin A$ if and only if $yin A$. Trivially, this is an equivalence relation, and so induces a partition on $X$. I claim that $tau$ is in fact, the topology induced by this partition as above.



      Indeed, if $Ain tau$, then $A=cup_xin A[x]$, where $[x]$ is the equivalence class of $x$. Trivially $A$ is contained in the right hand side, and if $yin[x]$, then since $xin A$ then $yin A$, so we have equality.



      Now, conversely, let $xin X$ and look at $[x]$. I claim that $X-[x]$ lies in $tau$. So see this, let $zin X-[x]$. Then since $znotin [x]$, there exists an open set $A_zin tau$ such that $zin A_z$ but $xnotin A_z$ (and hence, $[x]cap A_z=varnothing$). Now, $cup_znotin[x]A_z$ is an open set, contains every element of $X-[x]$, and intersects $[x]$ trivially because each element in the union does. That is, this open set is $A-[x]$; but since the complement of every open set is open, and $A-[x]$ is open, then $[x]$ is open. Thus, $[x]intau$.



      We have then proven that every element of the partition induced by $sim$ is open, and that every open set is a union of such elements of the partition. That is, the open sets are precisely the unions of elements of the partition $X/sim$.






      share|cite|improve this answer









      $endgroup$















        2












        2








        2





        $begingroup$

        The topologies with this property are precisely the ones that are derived from partitions of the underlying set $X$.



        Specifically, let $mathcalP=X_i_iin I$ be a partition of $X$, and let $tau$ be the collection of sets of the form $cup_iin I_0X_i$ for $I_0subseteq I$. Then $tau$ is a topology: the empty set corresponds to $I_0=varnothing$, the set $X$ to $I_0=I$; the union of such sets corresponds to the family indexed by the union of indices, and the intersection to the intersection of the indices. Moreover, the complement of the set corresponding to $I_0$ is the set corresponding to $I-I_0$. Thus, $tau$ has the desired property.



        Now let $tau$ be any topology on $X$ with the desired property. Define an equivalence relation on $X$ by letting $xsim y$ if and only if for every $Ain tau$, $xin A$ if and only if $yin A$. Trivially, this is an equivalence relation, and so induces a partition on $X$. I claim that $tau$ is in fact, the topology induced by this partition as above.



        Indeed, if $Ain tau$, then $A=cup_xin A[x]$, where $[x]$ is the equivalence class of $x$. Trivially $A$ is contained in the right hand side, and if $yin[x]$, then since $xin A$ then $yin A$, so we have equality.



        Now, conversely, let $xin X$ and look at $[x]$. I claim that $X-[x]$ lies in $tau$. So see this, let $zin X-[x]$. Then since $znotin [x]$, there exists an open set $A_zin tau$ such that $zin A_z$ but $xnotin A_z$ (and hence, $[x]cap A_z=varnothing$). Now, $cup_znotin[x]A_z$ is an open set, contains every element of $X-[x]$, and intersects $[x]$ trivially because each element in the union does. That is, this open set is $A-[x]$; but since the complement of every open set is open, and $A-[x]$ is open, then $[x]$ is open. Thus, $[x]intau$.



        We have then proven that every element of the partition induced by $sim$ is open, and that every open set is a union of such elements of the partition. That is, the open sets are precisely the unions of elements of the partition $X/sim$.






        share|cite|improve this answer









        $endgroup$



        The topologies with this property are precisely the ones that are derived from partitions of the underlying set $X$.



        Specifically, let $mathcalP=X_i_iin I$ be a partition of $X$, and let $tau$ be the collection of sets of the form $cup_iin I_0X_i$ for $I_0subseteq I$. Then $tau$ is a topology: the empty set corresponds to $I_0=varnothing$, the set $X$ to $I_0=I$; the union of such sets corresponds to the family indexed by the union of indices, and the intersection to the intersection of the indices. Moreover, the complement of the set corresponding to $I_0$ is the set corresponding to $I-I_0$. Thus, $tau$ has the desired property.



        Now let $tau$ be any topology on $X$ with the desired property. Define an equivalence relation on $X$ by letting $xsim y$ if and only if for every $Ain tau$, $xin A$ if and only if $yin A$. Trivially, this is an equivalence relation, and so induces a partition on $X$. I claim that $tau$ is in fact, the topology induced by this partition as above.



        Indeed, if $Ain tau$, then $A=cup_xin A[x]$, where $[x]$ is the equivalence class of $x$. Trivially $A$ is contained in the right hand side, and if $yin[x]$, then since $xin A$ then $yin A$, so we have equality.



        Now, conversely, let $xin X$ and look at $[x]$. I claim that $X-[x]$ lies in $tau$. So see this, let $zin X-[x]$. Then since $znotin [x]$, there exists an open set $A_zin tau$ such that $zin A_z$ but $xnotin A_z$ (and hence, $[x]cap A_z=varnothing$). Now, $cup_znotin[x]A_z$ is an open set, contains every element of $X-[x]$, and intersects $[x]$ trivially because each element in the union does. That is, this open set is $A-[x]$; but since the complement of every open set is open, and $A-[x]$ is open, then $[x]$ is open. Thus, $[x]intau$.



        We have then proven that every element of the partition induced by $sim$ is open, and that every open set is a union of such elements of the partition. That is, the open sets are precisely the unions of elements of the partition $X/sim$.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 59 mins ago









        Arturo MagidinArturo Magidin

        265k34590918




        265k34590918





















            3












            $begingroup$

            You can manufacture examples like this pretty easily. Let $A$ be any subset of $mathbbR$. Put a topology on $mathbbR$ with the following open sets:
            $$
            varnothing, A, mathbbR-A, mathbbR.
            $$

            You can easily check that this always gives a topology, and a subset of $mathbbR$ is open if and only if it is closed. This construction generalizes to any set $X$: there's nothing special about $mathbbR$ here.






            share|cite|improve this answer









            $endgroup$












            • $begingroup$
              More generally, take any partition and take unions of elements of the partition. This example is what you get from the partition $A,mathbbR-A$.
              $endgroup$
              – Arturo Magidin
              1 hour ago










            • $begingroup$
              @ArturoMagidin Let us denote with X set of all topologies which satisfy property in the question on $mathbbR$. Can every topology in $X$ be made with some partitions?
              $endgroup$
              – Thom
              1 hour ago










            • $begingroup$
              @Thom: Yes. I’ll write it up.
              $endgroup$
              – Arturo Magidin
              1 hour ago










            • $begingroup$
              @ArturoMagidin Fascinating. Thank you.
              $endgroup$
              – Thom
              59 mins ago















            3












            $begingroup$

            You can manufacture examples like this pretty easily. Let $A$ be any subset of $mathbbR$. Put a topology on $mathbbR$ with the following open sets:
            $$
            varnothing, A, mathbbR-A, mathbbR.
            $$

            You can easily check that this always gives a topology, and a subset of $mathbbR$ is open if and only if it is closed. This construction generalizes to any set $X$: there's nothing special about $mathbbR$ here.






            share|cite|improve this answer









            $endgroup$












            • $begingroup$
              More generally, take any partition and take unions of elements of the partition. This example is what you get from the partition $A,mathbbR-A$.
              $endgroup$
              – Arturo Magidin
              1 hour ago










            • $begingroup$
              @ArturoMagidin Let us denote with X set of all topologies which satisfy property in the question on $mathbbR$. Can every topology in $X$ be made with some partitions?
              $endgroup$
              – Thom
              1 hour ago










            • $begingroup$
              @Thom: Yes. I’ll write it up.
              $endgroup$
              – Arturo Magidin
              1 hour ago










            • $begingroup$
              @ArturoMagidin Fascinating. Thank you.
              $endgroup$
              – Thom
              59 mins ago













            3












            3








            3





            $begingroup$

            You can manufacture examples like this pretty easily. Let $A$ be any subset of $mathbbR$. Put a topology on $mathbbR$ with the following open sets:
            $$
            varnothing, A, mathbbR-A, mathbbR.
            $$

            You can easily check that this always gives a topology, and a subset of $mathbbR$ is open if and only if it is closed. This construction generalizes to any set $X$: there's nothing special about $mathbbR$ here.






            share|cite|improve this answer









            $endgroup$



            You can manufacture examples like this pretty easily. Let $A$ be any subset of $mathbbR$. Put a topology on $mathbbR$ with the following open sets:
            $$
            varnothing, A, mathbbR-A, mathbbR.
            $$

            You can easily check that this always gives a topology, and a subset of $mathbbR$ is open if and only if it is closed. This construction generalizes to any set $X$: there's nothing special about $mathbbR$ here.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered 1 hour ago









            RandallRandall

            10.6k11431




            10.6k11431











            • $begingroup$
              More generally, take any partition and take unions of elements of the partition. This example is what you get from the partition $A,mathbbR-A$.
              $endgroup$
              – Arturo Magidin
              1 hour ago










            • $begingroup$
              @ArturoMagidin Let us denote with X set of all topologies which satisfy property in the question on $mathbbR$. Can every topology in $X$ be made with some partitions?
              $endgroup$
              – Thom
              1 hour ago










            • $begingroup$
              @Thom: Yes. I’ll write it up.
              $endgroup$
              – Arturo Magidin
              1 hour ago










            • $begingroup$
              @ArturoMagidin Fascinating. Thank you.
              $endgroup$
              – Thom
              59 mins ago
















            • $begingroup$
              More generally, take any partition and take unions of elements of the partition. This example is what you get from the partition $A,mathbbR-A$.
              $endgroup$
              – Arturo Magidin
              1 hour ago










            • $begingroup$
              @ArturoMagidin Let us denote with X set of all topologies which satisfy property in the question on $mathbbR$. Can every topology in $X$ be made with some partitions?
              $endgroup$
              – Thom
              1 hour ago










            • $begingroup$
              @Thom: Yes. I’ll write it up.
              $endgroup$
              – Arturo Magidin
              1 hour ago










            • $begingroup$
              @ArturoMagidin Fascinating. Thank you.
              $endgroup$
              – Thom
              59 mins ago















            $begingroup$
            More generally, take any partition and take unions of elements of the partition. This example is what you get from the partition $A,mathbbR-A$.
            $endgroup$
            – Arturo Magidin
            1 hour ago




            $begingroup$
            More generally, take any partition and take unions of elements of the partition. This example is what you get from the partition $A,mathbbR-A$.
            $endgroup$
            – Arturo Magidin
            1 hour ago












            $begingroup$
            @ArturoMagidin Let us denote with X set of all topologies which satisfy property in the question on $mathbbR$. Can every topology in $X$ be made with some partitions?
            $endgroup$
            – Thom
            1 hour ago




            $begingroup$
            @ArturoMagidin Let us denote with X set of all topologies which satisfy property in the question on $mathbbR$. Can every topology in $X$ be made with some partitions?
            $endgroup$
            – Thom
            1 hour ago












            $begingroup$
            @Thom: Yes. I’ll write it up.
            $endgroup$
            – Arturo Magidin
            1 hour ago




            $begingroup$
            @Thom: Yes. I’ll write it up.
            $endgroup$
            – Arturo Magidin
            1 hour ago












            $begingroup$
            @ArturoMagidin Fascinating. Thank you.
            $endgroup$
            – Thom
            59 mins ago




            $begingroup$
            @ArturoMagidin Fascinating. Thank you.
            $endgroup$
            – Thom
            59 mins ago

















            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3151030%2fnon-trivial-topology-where-only-open-sets-are-closed%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            名間水力發電廠 目录 沿革 設施 鄰近設施 註釋 外部連結 导航菜单23°50′10″N 120°42′41″E / 23.83611°N 120.71139°E / 23.83611; 120.7113923°50′10″N 120°42′41″E / 23.83611°N 120.71139°E / 23.83611; 120.71139計畫概要原始内容臺灣第一座BOT 模式開發的水力發電廠-名間水力電廠名間水力發電廠 水利署首件BOT案原始内容《小檔案》名間電廠 首座BOT水力發電廠原始内容名間電廠BOT - 經濟部水利署中區水資源局

            Prove that NP is closed under karp reduction?Space(n) not closed under Karp reductions - what about NTime(n)?Class P is closed under rotation?Prove or disprove that $NL$ is closed under polynomial many-one reductions$mathbfNC_2$ is closed under log-space reductionOn Karp reductionwhen can I know if a class (complexity) is closed under reduction (cook/karp)Check if class $PSPACE$ is closed under polyonomially space reductionIs NPSPACE also closed under polynomial-time reduction and under log-space reduction?Prove PSPACE is closed under complement?Prove PSPACE is closed under union?

            Is my guitar’s action too high? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Strings too stiff on a recently purchased acoustic guitar | Cort AD880CEIs the action of my guitar really high?Μy little finger is too weak to play guitarWith guitar, how long should I give my fingers to strengthen / callous?When playing a fret the guitar sounds mutedPlaying (Barre) chords up the guitar neckI think my guitar strings are wound too tight and I can't play barre chordsF barre chord on an SG guitarHow to find to the right strings of a barre chord by feel?High action on higher fret on my steel acoustic guitar