What is the purpose or proof behind chain rule?Chain Rule applied to Trig Functionschain rule with manual substitutionchain rule or product ruleHelp understand chain rule derivativeThe chain rule problem with second compositeWhy is the chain rule applied to derivatives of trigonometric functions?Proof involving multivariable chain ruleChain rule to differentiate $sin ^2fracx2$Partial Derivative and Chain RuleDifferentiate without using chain rule in 5 steps

Is it normal that my co-workers at a fitness company criticize my food choices?

How to terminate ping <dest> &

Why does a Star of David appear at a rally with Francisco Franco?

Is it true that good novels will automatically sell themselves on Amazon (and so on) and there is no need for one to waste time promoting?

Recruiter wants very extensive technical details about all of my previous work

Do I need to be arrogant to get ahead?

Fastest way to pop N items from a large dict

What is the purpose or proof behind chain rule?

Is a party consisting of only a bard, a cleric, and a warlock functional long-term?

Official degrees of earth’s rotation per day

PTIJ: Who should I vote for? (21st Knesset Edition)

What is a ^ b and (a & b) << 1?

How to write cleanly even if my character uses expletive language?

Unable to evaluate Eigenvalues and Eigenvectors for a matrix (2)

New passport but visa is in old (lost) passport

What exactly is this small puffer fish doing and how did it manage to accomplish such a feat?

A single argument pattern definition applies to multiple-argument patterns?

What is "focus distance lower/upper" and how is it different from depth of field?

Knife as defense against stray dogs

How difficult is it to simply disable/disengage the MCAS on Boeing 737 Max 8 & 9 Aircraft?

What are substitutions for coconut in curry?

Are relativity and doppler effect related?

How are passwords stolen from companies if they only store hashes?

Most cost effective thermostat setting: consistent temperature vs. lowest temperature possible



What is the purpose or proof behind chain rule?


Chain Rule applied to Trig Functionschain rule with manual substitutionchain rule or product ruleHelp understand chain rule derivativeThe chain rule problem with second compositeWhy is the chain rule applied to derivatives of trigonometric functions?Proof involving multivariable chain ruleChain rule to differentiate $sin ^2fracx2$Partial Derivative and Chain RuleDifferentiate without using chain rule in 5 steps













2












$begingroup$


For example, take a function $sin x$. The derivative of this function is $cos x$.



The chain rule states that $fracddx (f(g(x)))$ is $fracddx g(x) fracddx (f(g(x)))$. Again going back to the example above, now instead of $sin x$ lets take $sin 2x$.



Differentiating it without chain rule, we get $cos 2x$. However, using chain rule, we get $2cos 2x$.



So now the problem is that I don't see the purpose behind the chain rule. Why should $sin 2x$ be $2cos 2x$?



Is there any proof behind this chain rule? I really need to know as I getting many questions wromg without using the chain rule.










share|cite|improve this question









$endgroup$







  • 1




    $begingroup$
    " Why should $sin 2x;$ be $;2cos 2x$?" No, it isn't: its derivative is. Why? Because that's what we get from theorems or from the definition of derivative as limit. That's all. And yes: of course there is proof of the chain rule: any decent calculus book includes it.
    $endgroup$
    – DonAntonio
    55 mins ago











  • $begingroup$
    In your post, when you are 'differentiating without chain rule', you are differentiating $sin 2x$ with respect to $2x$, rather than with respect to $x$.
    $endgroup$
    – Minus One-Twelfth
    54 mins ago











  • $begingroup$
    @DonAntonio what i meant was derivative. I was just writing that in short. U shoukd be able to understand that as this whole post is about derivative
    $endgroup$
    – rash
    51 mins ago










  • $begingroup$
    @MinusOne-Twelfth whether i am taking with respect to 2x or x, the derivative value isnt the same and thats my confusion. For example derivative of $sin 2x$ where $piover 2$. Differentiating with respect to 2x is -1 & with respect to x is -2. Why?
    $endgroup$
    – rash
    47 mins ago







  • 1




    $begingroup$
    @littleO I didnt say it was correct. It is just my confusion of why should it not be like that and should be $2cos x$
    $endgroup$
    – rash
    46 mins ago
















2












$begingroup$


For example, take a function $sin x$. The derivative of this function is $cos x$.



The chain rule states that $fracddx (f(g(x)))$ is $fracddx g(x) fracddx (f(g(x)))$. Again going back to the example above, now instead of $sin x$ lets take $sin 2x$.



Differentiating it without chain rule, we get $cos 2x$. However, using chain rule, we get $2cos 2x$.



So now the problem is that I don't see the purpose behind the chain rule. Why should $sin 2x$ be $2cos 2x$?



Is there any proof behind this chain rule? I really need to know as I getting many questions wromg without using the chain rule.










share|cite|improve this question









$endgroup$







  • 1




    $begingroup$
    " Why should $sin 2x;$ be $;2cos 2x$?" No, it isn't: its derivative is. Why? Because that's what we get from theorems or from the definition of derivative as limit. That's all. And yes: of course there is proof of the chain rule: any decent calculus book includes it.
    $endgroup$
    – DonAntonio
    55 mins ago











  • $begingroup$
    In your post, when you are 'differentiating without chain rule', you are differentiating $sin 2x$ with respect to $2x$, rather than with respect to $x$.
    $endgroup$
    – Minus One-Twelfth
    54 mins ago











  • $begingroup$
    @DonAntonio what i meant was derivative. I was just writing that in short. U shoukd be able to understand that as this whole post is about derivative
    $endgroup$
    – rash
    51 mins ago










  • $begingroup$
    @MinusOne-Twelfth whether i am taking with respect to 2x or x, the derivative value isnt the same and thats my confusion. For example derivative of $sin 2x$ where $piover 2$. Differentiating with respect to 2x is -1 & with respect to x is -2. Why?
    $endgroup$
    – rash
    47 mins ago







  • 1




    $begingroup$
    @littleO I didnt say it was correct. It is just my confusion of why should it not be like that and should be $2cos x$
    $endgroup$
    – rash
    46 mins ago














2












2








2


1



$begingroup$


For example, take a function $sin x$. The derivative of this function is $cos x$.



The chain rule states that $fracddx (f(g(x)))$ is $fracddx g(x) fracddx (f(g(x)))$. Again going back to the example above, now instead of $sin x$ lets take $sin 2x$.



Differentiating it without chain rule, we get $cos 2x$. However, using chain rule, we get $2cos 2x$.



So now the problem is that I don't see the purpose behind the chain rule. Why should $sin 2x$ be $2cos 2x$?



Is there any proof behind this chain rule? I really need to know as I getting many questions wromg without using the chain rule.










share|cite|improve this question









$endgroup$




For example, take a function $sin x$. The derivative of this function is $cos x$.



The chain rule states that $fracddx (f(g(x)))$ is $fracddx g(x) fracddx (f(g(x)))$. Again going back to the example above, now instead of $sin x$ lets take $sin 2x$.



Differentiating it without chain rule, we get $cos 2x$. However, using chain rule, we get $2cos 2x$.



So now the problem is that I don't see the purpose behind the chain rule. Why should $sin 2x$ be $2cos 2x$?



Is there any proof behind this chain rule? I really need to know as I getting many questions wromg without using the chain rule.







calculus derivatives soft-question






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 58 mins ago









rashrash

49214




49214







  • 1




    $begingroup$
    " Why should $sin 2x;$ be $;2cos 2x$?" No, it isn't: its derivative is. Why? Because that's what we get from theorems or from the definition of derivative as limit. That's all. And yes: of course there is proof of the chain rule: any decent calculus book includes it.
    $endgroup$
    – DonAntonio
    55 mins ago











  • $begingroup$
    In your post, when you are 'differentiating without chain rule', you are differentiating $sin 2x$ with respect to $2x$, rather than with respect to $x$.
    $endgroup$
    – Minus One-Twelfth
    54 mins ago











  • $begingroup$
    @DonAntonio what i meant was derivative. I was just writing that in short. U shoukd be able to understand that as this whole post is about derivative
    $endgroup$
    – rash
    51 mins ago










  • $begingroup$
    @MinusOne-Twelfth whether i am taking with respect to 2x or x, the derivative value isnt the same and thats my confusion. For example derivative of $sin 2x$ where $piover 2$. Differentiating with respect to 2x is -1 & with respect to x is -2. Why?
    $endgroup$
    – rash
    47 mins ago







  • 1




    $begingroup$
    @littleO I didnt say it was correct. It is just my confusion of why should it not be like that and should be $2cos x$
    $endgroup$
    – rash
    46 mins ago













  • 1




    $begingroup$
    " Why should $sin 2x;$ be $;2cos 2x$?" No, it isn't: its derivative is. Why? Because that's what we get from theorems or from the definition of derivative as limit. That's all. And yes: of course there is proof of the chain rule: any decent calculus book includes it.
    $endgroup$
    – DonAntonio
    55 mins ago











  • $begingroup$
    In your post, when you are 'differentiating without chain rule', you are differentiating $sin 2x$ with respect to $2x$, rather than with respect to $x$.
    $endgroup$
    – Minus One-Twelfth
    54 mins ago











  • $begingroup$
    @DonAntonio what i meant was derivative. I was just writing that in short. U shoukd be able to understand that as this whole post is about derivative
    $endgroup$
    – rash
    51 mins ago










  • $begingroup$
    @MinusOne-Twelfth whether i am taking with respect to 2x or x, the derivative value isnt the same and thats my confusion. For example derivative of $sin 2x$ where $piover 2$. Differentiating with respect to 2x is -1 & with respect to x is -2. Why?
    $endgroup$
    – rash
    47 mins ago







  • 1




    $begingroup$
    @littleO I didnt say it was correct. It is just my confusion of why should it not be like that and should be $2cos x$
    $endgroup$
    – rash
    46 mins ago








1




1




$begingroup$
" Why should $sin 2x;$ be $;2cos 2x$?" No, it isn't: its derivative is. Why? Because that's what we get from theorems or from the definition of derivative as limit. That's all. And yes: of course there is proof of the chain rule: any decent calculus book includes it.
$endgroup$
– DonAntonio
55 mins ago





$begingroup$
" Why should $sin 2x;$ be $;2cos 2x$?" No, it isn't: its derivative is. Why? Because that's what we get from theorems or from the definition of derivative as limit. That's all. And yes: of course there is proof of the chain rule: any decent calculus book includes it.
$endgroup$
– DonAntonio
55 mins ago













$begingroup$
In your post, when you are 'differentiating without chain rule', you are differentiating $sin 2x$ with respect to $2x$, rather than with respect to $x$.
$endgroup$
– Minus One-Twelfth
54 mins ago





$begingroup$
In your post, when you are 'differentiating without chain rule', you are differentiating $sin 2x$ with respect to $2x$, rather than with respect to $x$.
$endgroup$
– Minus One-Twelfth
54 mins ago













$begingroup$
@DonAntonio what i meant was derivative. I was just writing that in short. U shoukd be able to understand that as this whole post is about derivative
$endgroup$
– rash
51 mins ago




$begingroup$
@DonAntonio what i meant was derivative. I was just writing that in short. U shoukd be able to understand that as this whole post is about derivative
$endgroup$
– rash
51 mins ago












$begingroup$
@MinusOne-Twelfth whether i am taking with respect to 2x or x, the derivative value isnt the same and thats my confusion. For example derivative of $sin 2x$ where $piover 2$. Differentiating with respect to 2x is -1 & with respect to x is -2. Why?
$endgroup$
– rash
47 mins ago





$begingroup$
@MinusOne-Twelfth whether i am taking with respect to 2x or x, the derivative value isnt the same and thats my confusion. For example derivative of $sin 2x$ where $piover 2$. Differentiating with respect to 2x is -1 & with respect to x is -2. Why?
$endgroup$
– rash
47 mins ago





1




1




$begingroup$
@littleO I didnt say it was correct. It is just my confusion of why should it not be like that and should be $2cos x$
$endgroup$
– rash
46 mins ago





$begingroup$
@littleO I didnt say it was correct. It is just my confusion of why should it not be like that and should be $2cos x$
$endgroup$
– rash
46 mins ago











3 Answers
3






active

oldest

votes


















2












$begingroup$

This is a good question in my opinion. WHY is the chain rule right?
My quick answer is that you are using the chain rule already without knowing it in the product rule, power rule, ect:
$$
fracddxx^n = nx^n-1cdot fracddxx = nx^n-1
$$

So when you differentiate $sin x$ you are actually doing $cos x cdot x' = cos x$.
For a more detailed answer, lets look at the definition of the derivative.



$$
F'(x) = lim_yrightarrow xfracF(x)-F(y)x-y
$$

so let $F(x) = f(g(x))$ and what do we get?
$$
F'(x) = lim_yrightarrow xfracf(g(x)) - f(g(y))x-y
$$

which we can't evaluate. Let us assume that $g(x) ne g(y)$ when $x$ is 'close' to $y$, then we can multiply the whole thing by 1 to get the product of two derivatives:
$$
F'(x) = lim_yrightarrow xfracf(g(x)) - f(g(y))g(x)-g(y)cdot lim_yrightarrow x fracg(x)-g(y)x-y = f'(g(x))g'(x)
$$

where if we want to be picky we can consider $g(x)=g(y)$ too.



(What follows is quite informal) The chain rule actually says something fundamental about composition. We can think of the function $g(x)$ as 'stretching' or 'shrinking' the domain of $f$. When we differentiate we are differentiating with respect to $f$ under an 'unstretched' domain and must correct for our error by multiplying by the derivative of $g$ which is a measure of how severely the domain was stretched. This is why the power rule ect. do not seem to use the chain rule, the domain is unstretched, so our derivative doesn't need to be corrected at all!



For your example of $sin 2x$ lets think about what is going on, we are essentially squeezing $sin x$ in the $x$ direction. But this will make the slope of the sine function increase in a predictable way, in fact the slope at every point of this squeezed graph is twice as big as the original sine graph, exactly as predicted by the chain rule!



For more complicated $g(x)$ the chain rule measures the rate at which the domain is changing from $x$ at every point to make the derivative correct.






share|cite|improve this answer











$endgroup$




















    1












    $begingroup$

    Visually, the derivative is the slope of the tangent line, and the derivative allows us to take a nonlinear function $f$ and approximate it locally with a linear function (that is, a function whose graph is a straight line). In other words, if we know the value of $f(x)$, we can approximate the value of $f$ at a nearby point $x + Delta x$ as follows:
    $$
    tag1 f(x + Delta x) approx f(x) + f'(x) Delta x.
    $$



    Now suppose that $f(x) = g(h(x))$. Then we can approximate $f(x + Delta x)$ by using the above approximation twice, first with $h$ and then with $g$, as follows:
    beginalign
    f(x + Delta x) &= g(h(x + Delta x)) \
    &approx g(h(x) + h'(x) Delta x) \
    &approx g(h(x)) + g'(h(x)) h'(x) Delta x.
    endalign

    Comparing this result with equation (1), we see that
    $$
    f'(x) = g'(h(x)) h'(x).
    $$



    This is not yet a rigorous proof, but it shows how easy it is to discover the chain rule, and this derivation can be made into a rigorous proof without too much additional effort.






    share|cite|improve this answer









    $endgroup$




















      1












      $begingroup$

      When you said that the differentiation of $sin2x$ is $cos2x$, you didn't actually differentiate $sin 2x$ with respect to $x$, you differentiated it with respect to $2x$. Because the differentiation rule is that
      $$ fracddxsin x = cos x$$



      so, only by replacing ALL $x$ in the formula above can you follow the same rule without breaking it, which is
      $$ fracdd(2x)sin 2x = cos 2x$$



      However, the question isn't asking you to find $fracdd(2x) sin 2x$, it is asking you to find $fracddx sin 2x$. See the difference here?



      Since you differentiated the outer function,$f$, with respect to $2x$, you differentiated it with respect to the inner function because $g(x)=2x$.
      So you actually got $fracdfdg=cos 2x$.
      To get from $fracdfdg$ to $fracdfdx$, you just need to multiply by $fracdgdx$ because:
      $$fracdfdgtimesfracdgdx = fracdfdx $$
      after cancelling out the $dg$.
      In this problem, $fracdgdx = fracddx2x = 2$.
      That is why you have to mulitply a $2$ to your $cos 2x$.






      share|cite|improve this answer










      New contributor




      Carina Chen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      $endgroup$












      • $begingroup$
        Great explanation, but I have to mention that "derive" does not mean "differentiate". The words are not interchangable.
        $endgroup$
        – dbx
        24 mins ago










      • $begingroup$
        @dbx thanks for the catch! I've updated it.
        $endgroup$
        – Carina Chen
        22 mins ago










      Your Answer





      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3151008%2fwhat-is-the-purpose-or-proof-behind-chain-rule%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      2












      $begingroup$

      This is a good question in my opinion. WHY is the chain rule right?
      My quick answer is that you are using the chain rule already without knowing it in the product rule, power rule, ect:
      $$
      fracddxx^n = nx^n-1cdot fracddxx = nx^n-1
      $$

      So when you differentiate $sin x$ you are actually doing $cos x cdot x' = cos x$.
      For a more detailed answer, lets look at the definition of the derivative.



      $$
      F'(x) = lim_yrightarrow xfracF(x)-F(y)x-y
      $$

      so let $F(x) = f(g(x))$ and what do we get?
      $$
      F'(x) = lim_yrightarrow xfracf(g(x)) - f(g(y))x-y
      $$

      which we can't evaluate. Let us assume that $g(x) ne g(y)$ when $x$ is 'close' to $y$, then we can multiply the whole thing by 1 to get the product of two derivatives:
      $$
      F'(x) = lim_yrightarrow xfracf(g(x)) - f(g(y))g(x)-g(y)cdot lim_yrightarrow x fracg(x)-g(y)x-y = f'(g(x))g'(x)
      $$

      where if we want to be picky we can consider $g(x)=g(y)$ too.



      (What follows is quite informal) The chain rule actually says something fundamental about composition. We can think of the function $g(x)$ as 'stretching' or 'shrinking' the domain of $f$. When we differentiate we are differentiating with respect to $f$ under an 'unstretched' domain and must correct for our error by multiplying by the derivative of $g$ which is a measure of how severely the domain was stretched. This is why the power rule ect. do not seem to use the chain rule, the domain is unstretched, so our derivative doesn't need to be corrected at all!



      For your example of $sin 2x$ lets think about what is going on, we are essentially squeezing $sin x$ in the $x$ direction. But this will make the slope of the sine function increase in a predictable way, in fact the slope at every point of this squeezed graph is twice as big as the original sine graph, exactly as predicted by the chain rule!



      For more complicated $g(x)$ the chain rule measures the rate at which the domain is changing from $x$ at every point to make the derivative correct.






      share|cite|improve this answer











      $endgroup$

















        2












        $begingroup$

        This is a good question in my opinion. WHY is the chain rule right?
        My quick answer is that you are using the chain rule already without knowing it in the product rule, power rule, ect:
        $$
        fracddxx^n = nx^n-1cdot fracddxx = nx^n-1
        $$

        So when you differentiate $sin x$ you are actually doing $cos x cdot x' = cos x$.
        For a more detailed answer, lets look at the definition of the derivative.



        $$
        F'(x) = lim_yrightarrow xfracF(x)-F(y)x-y
        $$

        so let $F(x) = f(g(x))$ and what do we get?
        $$
        F'(x) = lim_yrightarrow xfracf(g(x)) - f(g(y))x-y
        $$

        which we can't evaluate. Let us assume that $g(x) ne g(y)$ when $x$ is 'close' to $y$, then we can multiply the whole thing by 1 to get the product of two derivatives:
        $$
        F'(x) = lim_yrightarrow xfracf(g(x)) - f(g(y))g(x)-g(y)cdot lim_yrightarrow x fracg(x)-g(y)x-y = f'(g(x))g'(x)
        $$

        where if we want to be picky we can consider $g(x)=g(y)$ too.



        (What follows is quite informal) The chain rule actually says something fundamental about composition. We can think of the function $g(x)$ as 'stretching' or 'shrinking' the domain of $f$. When we differentiate we are differentiating with respect to $f$ under an 'unstretched' domain and must correct for our error by multiplying by the derivative of $g$ which is a measure of how severely the domain was stretched. This is why the power rule ect. do not seem to use the chain rule, the domain is unstretched, so our derivative doesn't need to be corrected at all!



        For your example of $sin 2x$ lets think about what is going on, we are essentially squeezing $sin x$ in the $x$ direction. But this will make the slope of the sine function increase in a predictable way, in fact the slope at every point of this squeezed graph is twice as big as the original sine graph, exactly as predicted by the chain rule!



        For more complicated $g(x)$ the chain rule measures the rate at which the domain is changing from $x$ at every point to make the derivative correct.






        share|cite|improve this answer











        $endgroup$















          2












          2








          2





          $begingroup$

          This is a good question in my opinion. WHY is the chain rule right?
          My quick answer is that you are using the chain rule already without knowing it in the product rule, power rule, ect:
          $$
          fracddxx^n = nx^n-1cdot fracddxx = nx^n-1
          $$

          So when you differentiate $sin x$ you are actually doing $cos x cdot x' = cos x$.
          For a more detailed answer, lets look at the definition of the derivative.



          $$
          F'(x) = lim_yrightarrow xfracF(x)-F(y)x-y
          $$

          so let $F(x) = f(g(x))$ and what do we get?
          $$
          F'(x) = lim_yrightarrow xfracf(g(x)) - f(g(y))x-y
          $$

          which we can't evaluate. Let us assume that $g(x) ne g(y)$ when $x$ is 'close' to $y$, then we can multiply the whole thing by 1 to get the product of two derivatives:
          $$
          F'(x) = lim_yrightarrow xfracf(g(x)) - f(g(y))g(x)-g(y)cdot lim_yrightarrow x fracg(x)-g(y)x-y = f'(g(x))g'(x)
          $$

          where if we want to be picky we can consider $g(x)=g(y)$ too.



          (What follows is quite informal) The chain rule actually says something fundamental about composition. We can think of the function $g(x)$ as 'stretching' or 'shrinking' the domain of $f$. When we differentiate we are differentiating with respect to $f$ under an 'unstretched' domain and must correct for our error by multiplying by the derivative of $g$ which is a measure of how severely the domain was stretched. This is why the power rule ect. do not seem to use the chain rule, the domain is unstretched, so our derivative doesn't need to be corrected at all!



          For your example of $sin 2x$ lets think about what is going on, we are essentially squeezing $sin x$ in the $x$ direction. But this will make the slope of the sine function increase in a predictable way, in fact the slope at every point of this squeezed graph is twice as big as the original sine graph, exactly as predicted by the chain rule!



          For more complicated $g(x)$ the chain rule measures the rate at which the domain is changing from $x$ at every point to make the derivative correct.






          share|cite|improve this answer











          $endgroup$



          This is a good question in my opinion. WHY is the chain rule right?
          My quick answer is that you are using the chain rule already without knowing it in the product rule, power rule, ect:
          $$
          fracddxx^n = nx^n-1cdot fracddxx = nx^n-1
          $$

          So when you differentiate $sin x$ you are actually doing $cos x cdot x' = cos x$.
          For a more detailed answer, lets look at the definition of the derivative.



          $$
          F'(x) = lim_yrightarrow xfracF(x)-F(y)x-y
          $$

          so let $F(x) = f(g(x))$ and what do we get?
          $$
          F'(x) = lim_yrightarrow xfracf(g(x)) - f(g(y))x-y
          $$

          which we can't evaluate. Let us assume that $g(x) ne g(y)$ when $x$ is 'close' to $y$, then we can multiply the whole thing by 1 to get the product of two derivatives:
          $$
          F'(x) = lim_yrightarrow xfracf(g(x)) - f(g(y))g(x)-g(y)cdot lim_yrightarrow x fracg(x)-g(y)x-y = f'(g(x))g'(x)
          $$

          where if we want to be picky we can consider $g(x)=g(y)$ too.



          (What follows is quite informal) The chain rule actually says something fundamental about composition. We can think of the function $g(x)$ as 'stretching' or 'shrinking' the domain of $f$. When we differentiate we are differentiating with respect to $f$ under an 'unstretched' domain and must correct for our error by multiplying by the derivative of $g$ which is a measure of how severely the domain was stretched. This is why the power rule ect. do not seem to use the chain rule, the domain is unstretched, so our derivative doesn't need to be corrected at all!



          For your example of $sin 2x$ lets think about what is going on, we are essentially squeezing $sin x$ in the $x$ direction. But this will make the slope of the sine function increase in a predictable way, in fact the slope at every point of this squeezed graph is twice as big as the original sine graph, exactly as predicted by the chain rule!



          For more complicated $g(x)$ the chain rule measures the rate at which the domain is changing from $x$ at every point to make the derivative correct.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 18 mins ago

























          answered 23 mins ago









          Kyle CKyle C

          564




          564





















              1












              $begingroup$

              Visually, the derivative is the slope of the tangent line, and the derivative allows us to take a nonlinear function $f$ and approximate it locally with a linear function (that is, a function whose graph is a straight line). In other words, if we know the value of $f(x)$, we can approximate the value of $f$ at a nearby point $x + Delta x$ as follows:
              $$
              tag1 f(x + Delta x) approx f(x) + f'(x) Delta x.
              $$



              Now suppose that $f(x) = g(h(x))$. Then we can approximate $f(x + Delta x)$ by using the above approximation twice, first with $h$ and then with $g$, as follows:
              beginalign
              f(x + Delta x) &= g(h(x + Delta x)) \
              &approx g(h(x) + h'(x) Delta x) \
              &approx g(h(x)) + g'(h(x)) h'(x) Delta x.
              endalign

              Comparing this result with equation (1), we see that
              $$
              f'(x) = g'(h(x)) h'(x).
              $$



              This is not yet a rigorous proof, but it shows how easy it is to discover the chain rule, and this derivation can be made into a rigorous proof without too much additional effort.






              share|cite|improve this answer









              $endgroup$

















                1












                $begingroup$

                Visually, the derivative is the slope of the tangent line, and the derivative allows us to take a nonlinear function $f$ and approximate it locally with a linear function (that is, a function whose graph is a straight line). In other words, if we know the value of $f(x)$, we can approximate the value of $f$ at a nearby point $x + Delta x$ as follows:
                $$
                tag1 f(x + Delta x) approx f(x) + f'(x) Delta x.
                $$



                Now suppose that $f(x) = g(h(x))$. Then we can approximate $f(x + Delta x)$ by using the above approximation twice, first with $h$ and then with $g$, as follows:
                beginalign
                f(x + Delta x) &= g(h(x + Delta x)) \
                &approx g(h(x) + h'(x) Delta x) \
                &approx g(h(x)) + g'(h(x)) h'(x) Delta x.
                endalign

                Comparing this result with equation (1), we see that
                $$
                f'(x) = g'(h(x)) h'(x).
                $$



                This is not yet a rigorous proof, but it shows how easy it is to discover the chain rule, and this derivation can be made into a rigorous proof without too much additional effort.






                share|cite|improve this answer









                $endgroup$















                  1












                  1








                  1





                  $begingroup$

                  Visually, the derivative is the slope of the tangent line, and the derivative allows us to take a nonlinear function $f$ and approximate it locally with a linear function (that is, a function whose graph is a straight line). In other words, if we know the value of $f(x)$, we can approximate the value of $f$ at a nearby point $x + Delta x$ as follows:
                  $$
                  tag1 f(x + Delta x) approx f(x) + f'(x) Delta x.
                  $$



                  Now suppose that $f(x) = g(h(x))$. Then we can approximate $f(x + Delta x)$ by using the above approximation twice, first with $h$ and then with $g$, as follows:
                  beginalign
                  f(x + Delta x) &= g(h(x + Delta x)) \
                  &approx g(h(x) + h'(x) Delta x) \
                  &approx g(h(x)) + g'(h(x)) h'(x) Delta x.
                  endalign

                  Comparing this result with equation (1), we see that
                  $$
                  f'(x) = g'(h(x)) h'(x).
                  $$



                  This is not yet a rigorous proof, but it shows how easy it is to discover the chain rule, and this derivation can be made into a rigorous proof without too much additional effort.






                  share|cite|improve this answer









                  $endgroup$



                  Visually, the derivative is the slope of the tangent line, and the derivative allows us to take a nonlinear function $f$ and approximate it locally with a linear function (that is, a function whose graph is a straight line). In other words, if we know the value of $f(x)$, we can approximate the value of $f$ at a nearby point $x + Delta x$ as follows:
                  $$
                  tag1 f(x + Delta x) approx f(x) + f'(x) Delta x.
                  $$



                  Now suppose that $f(x) = g(h(x))$. Then we can approximate $f(x + Delta x)$ by using the above approximation twice, first with $h$ and then with $g$, as follows:
                  beginalign
                  f(x + Delta x) &= g(h(x + Delta x)) \
                  &approx g(h(x) + h'(x) Delta x) \
                  &approx g(h(x)) + g'(h(x)) h'(x) Delta x.
                  endalign

                  Comparing this result with equation (1), we see that
                  $$
                  f'(x) = g'(h(x)) h'(x).
                  $$



                  This is not yet a rigorous proof, but it shows how easy it is to discover the chain rule, and this derivation can be made into a rigorous proof without too much additional effort.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 30 mins ago









                  littleOlittleO

                  30k647110




                  30k647110





















                      1












                      $begingroup$

                      When you said that the differentiation of $sin2x$ is $cos2x$, you didn't actually differentiate $sin 2x$ with respect to $x$, you differentiated it with respect to $2x$. Because the differentiation rule is that
                      $$ fracddxsin x = cos x$$



                      so, only by replacing ALL $x$ in the formula above can you follow the same rule without breaking it, which is
                      $$ fracdd(2x)sin 2x = cos 2x$$



                      However, the question isn't asking you to find $fracdd(2x) sin 2x$, it is asking you to find $fracddx sin 2x$. See the difference here?



                      Since you differentiated the outer function,$f$, with respect to $2x$, you differentiated it with respect to the inner function because $g(x)=2x$.
                      So you actually got $fracdfdg=cos 2x$.
                      To get from $fracdfdg$ to $fracdfdx$, you just need to multiply by $fracdgdx$ because:
                      $$fracdfdgtimesfracdgdx = fracdfdx $$
                      after cancelling out the $dg$.
                      In this problem, $fracdgdx = fracddx2x = 2$.
                      That is why you have to mulitply a $2$ to your $cos 2x$.






                      share|cite|improve this answer










                      New contributor




                      Carina Chen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                      Check out our Code of Conduct.






                      $endgroup$












                      • $begingroup$
                        Great explanation, but I have to mention that "derive" does not mean "differentiate". The words are not interchangable.
                        $endgroup$
                        – dbx
                        24 mins ago










                      • $begingroup$
                        @dbx thanks for the catch! I've updated it.
                        $endgroup$
                        – Carina Chen
                        22 mins ago















                      1












                      $begingroup$

                      When you said that the differentiation of $sin2x$ is $cos2x$, you didn't actually differentiate $sin 2x$ with respect to $x$, you differentiated it with respect to $2x$. Because the differentiation rule is that
                      $$ fracddxsin x = cos x$$



                      so, only by replacing ALL $x$ in the formula above can you follow the same rule without breaking it, which is
                      $$ fracdd(2x)sin 2x = cos 2x$$



                      However, the question isn't asking you to find $fracdd(2x) sin 2x$, it is asking you to find $fracddx sin 2x$. See the difference here?



                      Since you differentiated the outer function,$f$, with respect to $2x$, you differentiated it with respect to the inner function because $g(x)=2x$.
                      So you actually got $fracdfdg=cos 2x$.
                      To get from $fracdfdg$ to $fracdfdx$, you just need to multiply by $fracdgdx$ because:
                      $$fracdfdgtimesfracdgdx = fracdfdx $$
                      after cancelling out the $dg$.
                      In this problem, $fracdgdx = fracddx2x = 2$.
                      That is why you have to mulitply a $2$ to your $cos 2x$.






                      share|cite|improve this answer










                      New contributor




                      Carina Chen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                      Check out our Code of Conduct.






                      $endgroup$












                      • $begingroup$
                        Great explanation, but I have to mention that "derive" does not mean "differentiate". The words are not interchangable.
                        $endgroup$
                        – dbx
                        24 mins ago










                      • $begingroup$
                        @dbx thanks for the catch! I've updated it.
                        $endgroup$
                        – Carina Chen
                        22 mins ago













                      1












                      1








                      1





                      $begingroup$

                      When you said that the differentiation of $sin2x$ is $cos2x$, you didn't actually differentiate $sin 2x$ with respect to $x$, you differentiated it with respect to $2x$. Because the differentiation rule is that
                      $$ fracddxsin x = cos x$$



                      so, only by replacing ALL $x$ in the formula above can you follow the same rule without breaking it, which is
                      $$ fracdd(2x)sin 2x = cos 2x$$



                      However, the question isn't asking you to find $fracdd(2x) sin 2x$, it is asking you to find $fracddx sin 2x$. See the difference here?



                      Since you differentiated the outer function,$f$, with respect to $2x$, you differentiated it with respect to the inner function because $g(x)=2x$.
                      So you actually got $fracdfdg=cos 2x$.
                      To get from $fracdfdg$ to $fracdfdx$, you just need to multiply by $fracdgdx$ because:
                      $$fracdfdgtimesfracdgdx = fracdfdx $$
                      after cancelling out the $dg$.
                      In this problem, $fracdgdx = fracddx2x = 2$.
                      That is why you have to mulitply a $2$ to your $cos 2x$.






                      share|cite|improve this answer










                      New contributor




                      Carina Chen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                      Check out our Code of Conduct.






                      $endgroup$



                      When you said that the differentiation of $sin2x$ is $cos2x$, you didn't actually differentiate $sin 2x$ with respect to $x$, you differentiated it with respect to $2x$. Because the differentiation rule is that
                      $$ fracddxsin x = cos x$$



                      so, only by replacing ALL $x$ in the formula above can you follow the same rule without breaking it, which is
                      $$ fracdd(2x)sin 2x = cos 2x$$



                      However, the question isn't asking you to find $fracdd(2x) sin 2x$, it is asking you to find $fracddx sin 2x$. See the difference here?



                      Since you differentiated the outer function,$f$, with respect to $2x$, you differentiated it with respect to the inner function because $g(x)=2x$.
                      So you actually got $fracdfdg=cos 2x$.
                      To get from $fracdfdg$ to $fracdfdx$, you just need to multiply by $fracdgdx$ because:
                      $$fracdfdgtimesfracdgdx = fracdfdx $$
                      after cancelling out the $dg$.
                      In this problem, $fracdgdx = fracddx2x = 2$.
                      That is why you have to mulitply a $2$ to your $cos 2x$.







                      share|cite|improve this answer










                      New contributor




                      Carina Chen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                      Check out our Code of Conduct.









                      share|cite|improve this answer



                      share|cite|improve this answer








                      edited 22 mins ago





















                      New contributor




                      Carina Chen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                      Check out our Code of Conduct.









                      answered 29 mins ago









                      Carina ChenCarina Chen

                      113




                      113




                      New contributor




                      Carina Chen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                      Check out our Code of Conduct.





                      New contributor





                      Carina Chen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                      Check out our Code of Conduct.






                      Carina Chen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                      Check out our Code of Conduct.











                      • $begingroup$
                        Great explanation, but I have to mention that "derive" does not mean "differentiate". The words are not interchangable.
                        $endgroup$
                        – dbx
                        24 mins ago










                      • $begingroup$
                        @dbx thanks for the catch! I've updated it.
                        $endgroup$
                        – Carina Chen
                        22 mins ago
















                      • $begingroup$
                        Great explanation, but I have to mention that "derive" does not mean "differentiate". The words are not interchangable.
                        $endgroup$
                        – dbx
                        24 mins ago










                      • $begingroup$
                        @dbx thanks for the catch! I've updated it.
                        $endgroup$
                        – Carina Chen
                        22 mins ago















                      $begingroup$
                      Great explanation, but I have to mention that "derive" does not mean "differentiate". The words are not interchangable.
                      $endgroup$
                      – dbx
                      24 mins ago




                      $begingroup$
                      Great explanation, but I have to mention that "derive" does not mean "differentiate". The words are not interchangable.
                      $endgroup$
                      – dbx
                      24 mins ago












                      $begingroup$
                      @dbx thanks for the catch! I've updated it.
                      $endgroup$
                      – Carina Chen
                      22 mins ago




                      $begingroup$
                      @dbx thanks for the catch! I've updated it.
                      $endgroup$
                      – Carina Chen
                      22 mins ago

















                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3151008%2fwhat-is-the-purpose-or-proof-behind-chain-rule%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      名間水力發電廠 目录 沿革 設施 鄰近設施 註釋 外部連結 导航菜单23°50′10″N 120°42′41″E / 23.83611°N 120.71139°E / 23.83611; 120.7113923°50′10″N 120°42′41″E / 23.83611°N 120.71139°E / 23.83611; 120.71139計畫概要原始内容臺灣第一座BOT 模式開發的水力發電廠-名間水力電廠名間水力發電廠 水利署首件BOT案原始内容《小檔案》名間電廠 首座BOT水力發電廠原始内容名間電廠BOT - 經濟部水利署中區水資源局

                      Prove that NP is closed under karp reduction?Space(n) not closed under Karp reductions - what about NTime(n)?Class P is closed under rotation?Prove or disprove that $NL$ is closed under polynomial many-one reductions$mathbfNC_2$ is closed under log-space reductionOn Karp reductionwhen can I know if a class (complexity) is closed under reduction (cook/karp)Check if class $PSPACE$ is closed under polyonomially space reductionIs NPSPACE also closed under polynomial-time reduction and under log-space reduction?Prove PSPACE is closed under complement?Prove PSPACE is closed under union?

                      Is my guitar’s action too high? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Strings too stiff on a recently purchased acoustic guitar | Cort AD880CEIs the action of my guitar really high?Μy little finger is too weak to play guitarWith guitar, how long should I give my fingers to strengthen / callous?When playing a fret the guitar sounds mutedPlaying (Barre) chords up the guitar neckI think my guitar strings are wound too tight and I can't play barre chordsF barre chord on an SG guitarHow to find to the right strings of a barre chord by feel?High action on higher fret on my steel acoustic guitar