Relations between homogeneous polynomialsCount the number of homogeneous polynomialshomogeneous polynomials over a finite fieldIs complete homogeneous symmetric polynomials, an irreducibile element in Polynomial ring?Hilbert's Nullstellensatz on polynomials with integer coefficientsIs an ideal generated by multilinear, irreducible, homogeneous polynomials of different degrees always radical?morphism flat and relationsDegrees of generators of radical idealsDegrees of polynomials defining a Jacobian of maximal rank on a varietyReduction formula for Schubert polynomialsMinimal “subset” of a set of homogeneous polynomials with same solution space
Relations between homogeneous polynomials
Count the number of homogeneous polynomialshomogeneous polynomials over a finite fieldIs complete homogeneous symmetric polynomials, an irreducibile element in Polynomial ring?Hilbert's Nullstellensatz on polynomials with integer coefficientsIs an ideal generated by multilinear, irreducible, homogeneous polynomials of different degrees always radical?morphism flat and relationsDegrees of generators of radical idealsDegrees of polynomials defining a Jacobian of maximal rank on a varietyReduction formula for Schubert polynomialsMinimal “subset” of a set of homogeneous polynomials with same solution space
$begingroup$
Let $F_1,ldots ,F_ellin mathbbC[X_1,ldots , X_n]$ be general homogeneous polynomials of degree $d$. For $p<d$, it seems likely that there is no nontrivial relation $sum F_iG_i=0$ with $G_1,ldots ,G_ell$ homogeneous of degree $p$. Is this known? If yes, what would be a reference (or a proof)?
ag.algebraic-geometry ac.commutative-algebra
$endgroup$
|
show 1 more comment
$begingroup$
Let $F_1,ldots ,F_ellin mathbbC[X_1,ldots , X_n]$ be general homogeneous polynomials of degree $d$. For $p<d$, it seems likely that there is no nontrivial relation $sum F_iG_i=0$ with $G_1,ldots ,G_ell$ homogeneous of degree $p$. Is this known? If yes, what would be a reference (or a proof)?
ag.algebraic-geometry ac.commutative-algebra
$endgroup$
$begingroup$
I think this question needs some clarification. I think you may mean something along the lines of: let $X$ be the moduli space of $n$-tuples of homogeneous polynomials of degree $d$; within $X$, there is a subspace $Y$ consisting of homogeneous polynomials that satisfy a nontrivial relation $sum F_i G_i = 0$ for some $G_i$ homogeneous of degree $p < d$ (i.e. the union of the subspaces determined by each tuple $G$). Is it true that $Y subsetneq X$?
$endgroup$
– user44191
1 hour ago
$begingroup$
Sure. Is that different from what I wrote?
$endgroup$
– abx
1 hour ago
$begingroup$
I found what you wrote ambiguous or underdetermined, e.g. with what you mean by "general"; I thought what I wrote made it more explicitly clear (though it may be overkill as written).
$endgroup$
– user44191
1 hour ago
$begingroup$
This seem trivially false if I haven't misunderstood the question. Take $n = 1, p = 0, d = 1, ell = 2$. Then $F_1 = ax, F_2 = bx$ for some $a, b$, so $b F_1 - a F_2 = 0$. I think both $n, ell$ play some role.
$endgroup$
– user44191
47 mins ago
$begingroup$
Oh, right. $ellleq n$ would be fine for me, though this can be certainly weakened.
$endgroup$
– abx
25 mins ago
|
show 1 more comment
$begingroup$
Let $F_1,ldots ,F_ellin mathbbC[X_1,ldots , X_n]$ be general homogeneous polynomials of degree $d$. For $p<d$, it seems likely that there is no nontrivial relation $sum F_iG_i=0$ with $G_1,ldots ,G_ell$ homogeneous of degree $p$. Is this known? If yes, what would be a reference (or a proof)?
ag.algebraic-geometry ac.commutative-algebra
$endgroup$
Let $F_1,ldots ,F_ellin mathbbC[X_1,ldots , X_n]$ be general homogeneous polynomials of degree $d$. For $p<d$, it seems likely that there is no nontrivial relation $sum F_iG_i=0$ with $G_1,ldots ,G_ell$ homogeneous of degree $p$. Is this known? If yes, what would be a reference (or a proof)?
ag.algebraic-geometry ac.commutative-algebra
ag.algebraic-geometry ac.commutative-algebra
edited 1 hour ago
abx
asked 1 hour ago
abxabx
23.8k34885
23.8k34885
$begingroup$
I think this question needs some clarification. I think you may mean something along the lines of: let $X$ be the moduli space of $n$-tuples of homogeneous polynomials of degree $d$; within $X$, there is a subspace $Y$ consisting of homogeneous polynomials that satisfy a nontrivial relation $sum F_i G_i = 0$ for some $G_i$ homogeneous of degree $p < d$ (i.e. the union of the subspaces determined by each tuple $G$). Is it true that $Y subsetneq X$?
$endgroup$
– user44191
1 hour ago
$begingroup$
Sure. Is that different from what I wrote?
$endgroup$
– abx
1 hour ago
$begingroup$
I found what you wrote ambiguous or underdetermined, e.g. with what you mean by "general"; I thought what I wrote made it more explicitly clear (though it may be overkill as written).
$endgroup$
– user44191
1 hour ago
$begingroup$
This seem trivially false if I haven't misunderstood the question. Take $n = 1, p = 0, d = 1, ell = 2$. Then $F_1 = ax, F_2 = bx$ for some $a, b$, so $b F_1 - a F_2 = 0$. I think both $n, ell$ play some role.
$endgroup$
– user44191
47 mins ago
$begingroup$
Oh, right. $ellleq n$ would be fine for me, though this can be certainly weakened.
$endgroup$
– abx
25 mins ago
|
show 1 more comment
$begingroup$
I think this question needs some clarification. I think you may mean something along the lines of: let $X$ be the moduli space of $n$-tuples of homogeneous polynomials of degree $d$; within $X$, there is a subspace $Y$ consisting of homogeneous polynomials that satisfy a nontrivial relation $sum F_i G_i = 0$ for some $G_i$ homogeneous of degree $p < d$ (i.e. the union of the subspaces determined by each tuple $G$). Is it true that $Y subsetneq X$?
$endgroup$
– user44191
1 hour ago
$begingroup$
Sure. Is that different from what I wrote?
$endgroup$
– abx
1 hour ago
$begingroup$
I found what you wrote ambiguous or underdetermined, e.g. with what you mean by "general"; I thought what I wrote made it more explicitly clear (though it may be overkill as written).
$endgroup$
– user44191
1 hour ago
$begingroup$
This seem trivially false if I haven't misunderstood the question. Take $n = 1, p = 0, d = 1, ell = 2$. Then $F_1 = ax, F_2 = bx$ for some $a, b$, so $b F_1 - a F_2 = 0$. I think both $n, ell$ play some role.
$endgroup$
– user44191
47 mins ago
$begingroup$
Oh, right. $ellleq n$ would be fine for me, though this can be certainly weakened.
$endgroup$
– abx
25 mins ago
$begingroup$
I think this question needs some clarification. I think you may mean something along the lines of: let $X$ be the moduli space of $n$-tuples of homogeneous polynomials of degree $d$; within $X$, there is a subspace $Y$ consisting of homogeneous polynomials that satisfy a nontrivial relation $sum F_i G_i = 0$ for some $G_i$ homogeneous of degree $p < d$ (i.e. the union of the subspaces determined by each tuple $G$). Is it true that $Y subsetneq X$?
$endgroup$
– user44191
1 hour ago
$begingroup$
I think this question needs some clarification. I think you may mean something along the lines of: let $X$ be the moduli space of $n$-tuples of homogeneous polynomials of degree $d$; within $X$, there is a subspace $Y$ consisting of homogeneous polynomials that satisfy a nontrivial relation $sum F_i G_i = 0$ for some $G_i$ homogeneous of degree $p < d$ (i.e. the union of the subspaces determined by each tuple $G$). Is it true that $Y subsetneq X$?
$endgroup$
– user44191
1 hour ago
$begingroup$
Sure. Is that different from what I wrote?
$endgroup$
– abx
1 hour ago
$begingroup$
Sure. Is that different from what I wrote?
$endgroup$
– abx
1 hour ago
$begingroup$
I found what you wrote ambiguous or underdetermined, e.g. with what you mean by "general"; I thought what I wrote made it more explicitly clear (though it may be overkill as written).
$endgroup$
– user44191
1 hour ago
$begingroup$
I found what you wrote ambiguous or underdetermined, e.g. with what you mean by "general"; I thought what I wrote made it more explicitly clear (though it may be overkill as written).
$endgroup$
– user44191
1 hour ago
$begingroup$
This seem trivially false if I haven't misunderstood the question. Take $n = 1, p = 0, d = 1, ell = 2$. Then $F_1 = ax, F_2 = bx$ for some $a, b$, so $b F_1 - a F_2 = 0$. I think both $n, ell$ play some role.
$endgroup$
– user44191
47 mins ago
$begingroup$
This seem trivially false if I haven't misunderstood the question. Take $n = 1, p = 0, d = 1, ell = 2$. Then $F_1 = ax, F_2 = bx$ for some $a, b$, so $b F_1 - a F_2 = 0$. I think both $n, ell$ play some role.
$endgroup$
– user44191
47 mins ago
$begingroup$
Oh, right. $ellleq n$ would be fine for me, though this can be certainly weakened.
$endgroup$
– abx
25 mins ago
$begingroup$
Oh, right. $ellleq n$ would be fine for me, though this can be certainly weakened.
$endgroup$
– abx
25 mins ago
|
show 1 more comment
1 Answer
1
active
oldest
votes
$begingroup$
I think this can be controlled as follows. Let $Z subset mathbbP^n-1$ be the complete intersection defined by $F_i$. Then there is a Koszul resolution
$$
dots to mathcalO(-2d)^binomell2 to mathcalO(-d)^ell to mathcalO to mathcalO_Z to 0.
$$
Twisting it by $mathcalO(d+p)$ we obtain
$$
dots to mathcalO(p-d)^binomell2 to mathcalO(p)^ell to mathcalO(d+p) to mathcalO_Z(d+p) to 0.
$$
Your question is equivalent to injectivity of the induced map
$$
H^0(mathcalO(p)^ell) to H^0(mathcalO(d+p)).
$$
If $n ge ell$ the cohomology spectral sequence of the twisted Koszul complex proves this. Is that enough for your purposes?
$endgroup$
1
$begingroup$
Thanks, but could you explain why the Koszul complex gives that?
$endgroup$
– abx
1 hour ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "504"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f325793%2frelations-between-homogeneous-polynomials%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
I think this can be controlled as follows. Let $Z subset mathbbP^n-1$ be the complete intersection defined by $F_i$. Then there is a Koszul resolution
$$
dots to mathcalO(-2d)^binomell2 to mathcalO(-d)^ell to mathcalO to mathcalO_Z to 0.
$$
Twisting it by $mathcalO(d+p)$ we obtain
$$
dots to mathcalO(p-d)^binomell2 to mathcalO(p)^ell to mathcalO(d+p) to mathcalO_Z(d+p) to 0.
$$
Your question is equivalent to injectivity of the induced map
$$
H^0(mathcalO(p)^ell) to H^0(mathcalO(d+p)).
$$
If $n ge ell$ the cohomology spectral sequence of the twisted Koszul complex proves this. Is that enough for your purposes?
$endgroup$
1
$begingroup$
Thanks, but could you explain why the Koszul complex gives that?
$endgroup$
– abx
1 hour ago
add a comment |
$begingroup$
I think this can be controlled as follows. Let $Z subset mathbbP^n-1$ be the complete intersection defined by $F_i$. Then there is a Koszul resolution
$$
dots to mathcalO(-2d)^binomell2 to mathcalO(-d)^ell to mathcalO to mathcalO_Z to 0.
$$
Twisting it by $mathcalO(d+p)$ we obtain
$$
dots to mathcalO(p-d)^binomell2 to mathcalO(p)^ell to mathcalO(d+p) to mathcalO_Z(d+p) to 0.
$$
Your question is equivalent to injectivity of the induced map
$$
H^0(mathcalO(p)^ell) to H^0(mathcalO(d+p)).
$$
If $n ge ell$ the cohomology spectral sequence of the twisted Koszul complex proves this. Is that enough for your purposes?
$endgroup$
1
$begingroup$
Thanks, but could you explain why the Koszul complex gives that?
$endgroup$
– abx
1 hour ago
add a comment |
$begingroup$
I think this can be controlled as follows. Let $Z subset mathbbP^n-1$ be the complete intersection defined by $F_i$. Then there is a Koszul resolution
$$
dots to mathcalO(-2d)^binomell2 to mathcalO(-d)^ell to mathcalO to mathcalO_Z to 0.
$$
Twisting it by $mathcalO(d+p)$ we obtain
$$
dots to mathcalO(p-d)^binomell2 to mathcalO(p)^ell to mathcalO(d+p) to mathcalO_Z(d+p) to 0.
$$
Your question is equivalent to injectivity of the induced map
$$
H^0(mathcalO(p)^ell) to H^0(mathcalO(d+p)).
$$
If $n ge ell$ the cohomology spectral sequence of the twisted Koszul complex proves this. Is that enough for your purposes?
$endgroup$
I think this can be controlled as follows. Let $Z subset mathbbP^n-1$ be the complete intersection defined by $F_i$. Then there is a Koszul resolution
$$
dots to mathcalO(-2d)^binomell2 to mathcalO(-d)^ell to mathcalO to mathcalO_Z to 0.
$$
Twisting it by $mathcalO(d+p)$ we obtain
$$
dots to mathcalO(p-d)^binomell2 to mathcalO(p)^ell to mathcalO(d+p) to mathcalO_Z(d+p) to 0.
$$
Your question is equivalent to injectivity of the induced map
$$
H^0(mathcalO(p)^ell) to H^0(mathcalO(d+p)).
$$
If $n ge ell$ the cohomology spectral sequence of the twisted Koszul complex proves this. Is that enough for your purposes?
answered 1 hour ago
SashaSasha
21k22755
21k22755
1
$begingroup$
Thanks, but could you explain why the Koszul complex gives that?
$endgroup$
– abx
1 hour ago
add a comment |
1
$begingroup$
Thanks, but could you explain why the Koszul complex gives that?
$endgroup$
– abx
1 hour ago
1
1
$begingroup$
Thanks, but could you explain why the Koszul complex gives that?
$endgroup$
– abx
1 hour ago
$begingroup$
Thanks, but could you explain why the Koszul complex gives that?
$endgroup$
– abx
1 hour ago
add a comment |
Thanks for contributing an answer to MathOverflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f325793%2frelations-between-homogeneous-polynomials%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
I think this question needs some clarification. I think you may mean something along the lines of: let $X$ be the moduli space of $n$-tuples of homogeneous polynomials of degree $d$; within $X$, there is a subspace $Y$ consisting of homogeneous polynomials that satisfy a nontrivial relation $sum F_i G_i = 0$ for some $G_i$ homogeneous of degree $p < d$ (i.e. the union of the subspaces determined by each tuple $G$). Is it true that $Y subsetneq X$?
$endgroup$
– user44191
1 hour ago
$begingroup$
Sure. Is that different from what I wrote?
$endgroup$
– abx
1 hour ago
$begingroup$
I found what you wrote ambiguous or underdetermined, e.g. with what you mean by "general"; I thought what I wrote made it more explicitly clear (though it may be overkill as written).
$endgroup$
– user44191
1 hour ago
$begingroup$
This seem trivially false if I haven't misunderstood the question. Take $n = 1, p = 0, d = 1, ell = 2$. Then $F_1 = ax, F_2 = bx$ for some $a, b$, so $b F_1 - a F_2 = 0$. I think both $n, ell$ play some role.
$endgroup$
– user44191
47 mins ago
$begingroup$
Oh, right. $ellleq n$ would be fine for me, though this can be certainly weakened.
$endgroup$
– abx
25 mins ago