Calculation of line of sight system gain Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Assumptions for Hurst exponent calculationGain function calculation (frequency response)Magnitude-squared Coherence calculation inconsistenceCalculation of the correlation of two sinusoidalsSystem invertabilityDominant eigenvectors of an unknown matrixhow do you compute the channel gain from path loss index in wireless communication?Causal system, order of numerator and denominatorCalculation of actual analog input from bipolar ADC's outputcoding gain and shaping gain in SCMA

An isoperimetric-type inequality inside a cube

Why does BitLocker not use RSA?

How can I prevent/balance waiting and turtling as a response to cooldown mechanics

Random body shuffle every night—can we still function?

Does the main washing effect of soap come from foam?

NIntegrate on a solution of a matrix ODE

First paper to introduce the "principal-agent problem"

Did John Wesley plagiarize Matthew Henry...?

Flight departed from the gate 5 min before scheduled departure time. Refund options

Are there any irrational/transcendental numbers for which the distribution of decimal digits is not uniform?

As a dual citizen, my US passport will expire one day after traveling to the US. Will this work?

Baking rewards as operations

Can two people see the same photon?

Why complex landing gears are used instead of simple, reliable and light weight muscle wire or shape memory alloys?

Is the time—manner—place ordering of adverbials an oversimplification?

newbie Q : How to read an output file in one command line

Pointing to problems without suggesting solutions

Where and when has Thucydides been studied?

How do I find my Spellcasting Ability for my D&D character?

Short story about astronauts fertilizing soil with their own bodies

What did Turing mean when saying that "machines cannot give rise to surprises" is due to a fallacy?

.bashrc alias for a command with fixed second parameter

How to make triangles with rounded sides and corners? (squircle with 3 sides)

How to ask rejected full-time candidates to apply to teach individual courses?



Calculation of line of sight system gain



Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)
Announcing the arrival of Valued Associate #679: Cesar Manara
Unicorn Meta Zoo #1: Why another podcast?Assumptions for Hurst exponent calculationGain function calculation (frequency response)Magnitude-squared Coherence calculation inconsistenceCalculation of the correlation of two sinusoidalsSystem invertabilityDominant eigenvectors of an unknown matrixhow do you compute the channel gain from path loss index in wireless communication?Causal system, order of numerator and denominatorCalculation of actual analog input from bipolar ADC's outputcoding gain and shaping gain in SCMA










1












$begingroup$


I'm trying to calculate the overall gain of the transmitter-receiver system for a line-of-sight wireless transmission with the following properties:



  • A carrier frequency of 0.5GHz

  • A distance between the transmitter and receiver antennas of 2Km

  • A parabolic antenna in the transmitter with a face area of 0.8m2

  • An infinitesimal dipole in the receiver


From what I can understand/determine the equation for calculating gain is:



G = 4π*effective area/carrier wavelength/carrier wavelength OR



G = 4π*carrier frequency2*effective area/speed of light2




My question is how to calculate the overall gain of the system. Is it as simple as calculating the gain of the transmitter and receiver separately and then adding them together?










share|improve this question







New contributor




Lily Haynes is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$
















    1












    $begingroup$


    I'm trying to calculate the overall gain of the transmitter-receiver system for a line-of-sight wireless transmission with the following properties:



    • A carrier frequency of 0.5GHz

    • A distance between the transmitter and receiver antennas of 2Km

    • A parabolic antenna in the transmitter with a face area of 0.8m2

    • An infinitesimal dipole in the receiver


    From what I can understand/determine the equation for calculating gain is:



    G = 4π*effective area/carrier wavelength/carrier wavelength OR



    G = 4π*carrier frequency2*effective area/speed of light2




    My question is how to calculate the overall gain of the system. Is it as simple as calculating the gain of the transmitter and receiver separately and then adding them together?










    share|improve this question







    New contributor




    Lily Haynes is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$














      1












      1








      1





      $begingroup$


      I'm trying to calculate the overall gain of the transmitter-receiver system for a line-of-sight wireless transmission with the following properties:



      • A carrier frequency of 0.5GHz

      • A distance between the transmitter and receiver antennas of 2Km

      • A parabolic antenna in the transmitter with a face area of 0.8m2

      • An infinitesimal dipole in the receiver


      From what I can understand/determine the equation for calculating gain is:



      G = 4π*effective area/carrier wavelength/carrier wavelength OR



      G = 4π*carrier frequency2*effective area/speed of light2




      My question is how to calculate the overall gain of the system. Is it as simple as calculating the gain of the transmitter and receiver separately and then adding them together?










      share|improve this question







      New contributor




      Lily Haynes is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      I'm trying to calculate the overall gain of the transmitter-receiver system for a line-of-sight wireless transmission with the following properties:



      • A carrier frequency of 0.5GHz

      • A distance between the transmitter and receiver antennas of 2Km

      • A parabolic antenna in the transmitter with a face area of 0.8m2

      • An infinitesimal dipole in the receiver


      From what I can understand/determine the equation for calculating gain is:



      G = 4π*effective area/carrier wavelength/carrier wavelength OR



      G = 4π*carrier frequency2*effective area/speed of light2




      My question is how to calculate the overall gain of the system. Is it as simple as calculating the gain of the transmitter and receiver separately and then adding them together?







      signal-analysis






      share|improve this question







      New contributor




      Lily Haynes is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|improve this question







      New contributor




      Lily Haynes is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|improve this question




      share|improve this question






      New contributor




      Lily Haynes is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 3 hours ago









      Lily HaynesLily Haynes

      61




      61




      New contributor




      Lily Haynes is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      Lily Haynes is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      Lily Haynes is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.




















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          You need to multiply the antenna gains, not add them. Specifically, if the free-space loss (attenuation) is $L_FS$, the transmitter antenna has gain $G_T$, and the receiver antenna has gain $G_R$, then the total system loss $L$ is $$ L = fracL_FSG_T G_R. $$ The system gain $G$ is $$G = frac1L = G_FSG _T G_R, $$ where $G_FS$ is the free-space gain.



          Of course, if you're doing the calculation in decibels, then the antenna gains are added: $$ G_dB = G_FS,dB + G_T,dB + G_R,dB. $$






          share|improve this answer









          $endgroup$












          • $begingroup$
            Thank you that's really helpful but I'm a bit confused as to how to calculate the free-space gain that you talked about. I understand how to calculate the free-space loss, but I can't seem to find any information about free-space gain?
            $endgroup$
            – Lily Haynes
            1 hour ago










          • $begingroup$
            I focused on the gain since that is what you mention in your question. The gain is just the reciprocal of the loss: $G = 1/L$. If all you need is the loss, you can use the first formula in my answer; in decibels, it'd be $L_dB = L_FS,dB - G_T,dB - G_R,dB$.
            $endgroup$
            – MBaz
            47 mins ago










          • $begingroup$
            Perfect, I understand now, thank you for your help!
            $endgroup$
            – Lily Haynes
            45 mins ago










          • $begingroup$
            You're welcome; glad to be of help!
            $endgroup$
            – MBaz
            44 mins ago











          Your Answer








          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "295"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );






          Lily Haynes is a new contributor. Be nice, and check out our Code of Conduct.









          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdsp.stackexchange.com%2fquestions%2f56847%2fcalculation-of-line-of-sight-system-gain%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          You need to multiply the antenna gains, not add them. Specifically, if the free-space loss (attenuation) is $L_FS$, the transmitter antenna has gain $G_T$, and the receiver antenna has gain $G_R$, then the total system loss $L$ is $$ L = fracL_FSG_T G_R. $$ The system gain $G$ is $$G = frac1L = G_FSG _T G_R, $$ where $G_FS$ is the free-space gain.



          Of course, if you're doing the calculation in decibels, then the antenna gains are added: $$ G_dB = G_FS,dB + G_T,dB + G_R,dB. $$






          share|improve this answer









          $endgroup$












          • $begingroup$
            Thank you that's really helpful but I'm a bit confused as to how to calculate the free-space gain that you talked about. I understand how to calculate the free-space loss, but I can't seem to find any information about free-space gain?
            $endgroup$
            – Lily Haynes
            1 hour ago










          • $begingroup$
            I focused on the gain since that is what you mention in your question. The gain is just the reciprocal of the loss: $G = 1/L$. If all you need is the loss, you can use the first formula in my answer; in decibels, it'd be $L_dB = L_FS,dB - G_T,dB - G_R,dB$.
            $endgroup$
            – MBaz
            47 mins ago










          • $begingroup$
            Perfect, I understand now, thank you for your help!
            $endgroup$
            – Lily Haynes
            45 mins ago










          • $begingroup$
            You're welcome; glad to be of help!
            $endgroup$
            – MBaz
            44 mins ago















          1












          $begingroup$

          You need to multiply the antenna gains, not add them. Specifically, if the free-space loss (attenuation) is $L_FS$, the transmitter antenna has gain $G_T$, and the receiver antenna has gain $G_R$, then the total system loss $L$ is $$ L = fracL_FSG_T G_R. $$ The system gain $G$ is $$G = frac1L = G_FSG _T G_R, $$ where $G_FS$ is the free-space gain.



          Of course, if you're doing the calculation in decibels, then the antenna gains are added: $$ G_dB = G_FS,dB + G_T,dB + G_R,dB. $$






          share|improve this answer









          $endgroup$












          • $begingroup$
            Thank you that's really helpful but I'm a bit confused as to how to calculate the free-space gain that you talked about. I understand how to calculate the free-space loss, but I can't seem to find any information about free-space gain?
            $endgroup$
            – Lily Haynes
            1 hour ago










          • $begingroup$
            I focused on the gain since that is what you mention in your question. The gain is just the reciprocal of the loss: $G = 1/L$. If all you need is the loss, you can use the first formula in my answer; in decibels, it'd be $L_dB = L_FS,dB - G_T,dB - G_R,dB$.
            $endgroup$
            – MBaz
            47 mins ago










          • $begingroup$
            Perfect, I understand now, thank you for your help!
            $endgroup$
            – Lily Haynes
            45 mins ago










          • $begingroup$
            You're welcome; glad to be of help!
            $endgroup$
            – MBaz
            44 mins ago













          1












          1








          1





          $begingroup$

          You need to multiply the antenna gains, not add them. Specifically, if the free-space loss (attenuation) is $L_FS$, the transmitter antenna has gain $G_T$, and the receiver antenna has gain $G_R$, then the total system loss $L$ is $$ L = fracL_FSG_T G_R. $$ The system gain $G$ is $$G = frac1L = G_FSG _T G_R, $$ where $G_FS$ is the free-space gain.



          Of course, if you're doing the calculation in decibels, then the antenna gains are added: $$ G_dB = G_FS,dB + G_T,dB + G_R,dB. $$






          share|improve this answer









          $endgroup$



          You need to multiply the antenna gains, not add them. Specifically, if the free-space loss (attenuation) is $L_FS$, the transmitter antenna has gain $G_T$, and the receiver antenna has gain $G_R$, then the total system loss $L$ is $$ L = fracL_FSG_T G_R. $$ The system gain $G$ is $$G = frac1L = G_FSG _T G_R, $$ where $G_FS$ is the free-space gain.



          Of course, if you're doing the calculation in decibels, then the antenna gains are added: $$ G_dB = G_FS,dB + G_T,dB + G_R,dB. $$







          share|improve this answer












          share|improve this answer



          share|improve this answer










          answered 1 hour ago









          MBazMBaz

          9,08041733




          9,08041733











          • $begingroup$
            Thank you that's really helpful but I'm a bit confused as to how to calculate the free-space gain that you talked about. I understand how to calculate the free-space loss, but I can't seem to find any information about free-space gain?
            $endgroup$
            – Lily Haynes
            1 hour ago










          • $begingroup$
            I focused on the gain since that is what you mention in your question. The gain is just the reciprocal of the loss: $G = 1/L$. If all you need is the loss, you can use the first formula in my answer; in decibels, it'd be $L_dB = L_FS,dB - G_T,dB - G_R,dB$.
            $endgroup$
            – MBaz
            47 mins ago










          • $begingroup$
            Perfect, I understand now, thank you for your help!
            $endgroup$
            – Lily Haynes
            45 mins ago










          • $begingroup$
            You're welcome; glad to be of help!
            $endgroup$
            – MBaz
            44 mins ago
















          • $begingroup$
            Thank you that's really helpful but I'm a bit confused as to how to calculate the free-space gain that you talked about. I understand how to calculate the free-space loss, but I can't seem to find any information about free-space gain?
            $endgroup$
            – Lily Haynes
            1 hour ago










          • $begingroup$
            I focused on the gain since that is what you mention in your question. The gain is just the reciprocal of the loss: $G = 1/L$. If all you need is the loss, you can use the first formula in my answer; in decibels, it'd be $L_dB = L_FS,dB - G_T,dB - G_R,dB$.
            $endgroup$
            – MBaz
            47 mins ago










          • $begingroup$
            Perfect, I understand now, thank you for your help!
            $endgroup$
            – Lily Haynes
            45 mins ago










          • $begingroup$
            You're welcome; glad to be of help!
            $endgroup$
            – MBaz
            44 mins ago















          $begingroup$
          Thank you that's really helpful but I'm a bit confused as to how to calculate the free-space gain that you talked about. I understand how to calculate the free-space loss, but I can't seem to find any information about free-space gain?
          $endgroup$
          – Lily Haynes
          1 hour ago




          $begingroup$
          Thank you that's really helpful but I'm a bit confused as to how to calculate the free-space gain that you talked about. I understand how to calculate the free-space loss, but I can't seem to find any information about free-space gain?
          $endgroup$
          – Lily Haynes
          1 hour ago












          $begingroup$
          I focused on the gain since that is what you mention in your question. The gain is just the reciprocal of the loss: $G = 1/L$. If all you need is the loss, you can use the first formula in my answer; in decibels, it'd be $L_dB = L_FS,dB - G_T,dB - G_R,dB$.
          $endgroup$
          – MBaz
          47 mins ago




          $begingroup$
          I focused on the gain since that is what you mention in your question. The gain is just the reciprocal of the loss: $G = 1/L$. If all you need is the loss, you can use the first formula in my answer; in decibels, it'd be $L_dB = L_FS,dB - G_T,dB - G_R,dB$.
          $endgroup$
          – MBaz
          47 mins ago












          $begingroup$
          Perfect, I understand now, thank you for your help!
          $endgroup$
          – Lily Haynes
          45 mins ago




          $begingroup$
          Perfect, I understand now, thank you for your help!
          $endgroup$
          – Lily Haynes
          45 mins ago












          $begingroup$
          You're welcome; glad to be of help!
          $endgroup$
          – MBaz
          44 mins ago




          $begingroup$
          You're welcome; glad to be of help!
          $endgroup$
          – MBaz
          44 mins ago










          Lily Haynes is a new contributor. Be nice, and check out our Code of Conduct.









          draft saved

          draft discarded


















          Lily Haynes is a new contributor. Be nice, and check out our Code of Conduct.












          Lily Haynes is a new contributor. Be nice, and check out our Code of Conduct.











          Lily Haynes is a new contributor. Be nice, and check out our Code of Conduct.














          Thanks for contributing an answer to Signal Processing Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdsp.stackexchange.com%2fquestions%2f56847%2fcalculation-of-line-of-sight-system-gain%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          名間水力發電廠 目录 沿革 設施 鄰近設施 註釋 外部連結 导航菜单23°50′10″N 120°42′41″E / 23.83611°N 120.71139°E / 23.83611; 120.7113923°50′10″N 120°42′41″E / 23.83611°N 120.71139°E / 23.83611; 120.71139計畫概要原始内容臺灣第一座BOT 模式開發的水力發電廠-名間水力電廠名間水力發電廠 水利署首件BOT案原始内容《小檔案》名間電廠 首座BOT水力發電廠原始内容名間電廠BOT - 經濟部水利署中區水資源局

          Prove that NP is closed under karp reduction?Space(n) not closed under Karp reductions - what about NTime(n)?Class P is closed under rotation?Prove or disprove that $NL$ is closed under polynomial many-one reductions$mathbfNC_2$ is closed under log-space reductionOn Karp reductionwhen can I know if a class (complexity) is closed under reduction (cook/karp)Check if class $PSPACE$ is closed under polyonomially space reductionIs NPSPACE also closed under polynomial-time reduction and under log-space reduction?Prove PSPACE is closed under complement?Prove PSPACE is closed under union?

          Is my guitar’s action too high? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Strings too stiff on a recently purchased acoustic guitar | Cort AD880CEIs the action of my guitar really high?Μy little finger is too weak to play guitarWith guitar, how long should I give my fingers to strengthen / callous?When playing a fret the guitar sounds mutedPlaying (Barre) chords up the guitar neckI think my guitar strings are wound too tight and I can't play barre chordsF barre chord on an SG guitarHow to find to the right strings of a barre chord by feel?High action on higher fret on my steel acoustic guitar