calculator's angle answer for trig ratios that can work in more than 1 quadrant on the unit circle Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Understanding inverse trigonometric relationsFinding a point on the unit circle; more specifically, what quadrant it is inBroken Calculator: only certain unary functions work.How does the unit circle work for trigonometric ratios of non-acute angles?unit circle trigonometry where angle is greater than 90 degrees.Why are the Trig functions defined by the counterclockwise path of a circle?Trigonometric Ratios for angles greater than 90 degrees and the Unit CircleIf $sinx=t, quad xin(frac3pi2,2pi),$ what is $tanx?$Trigonometric Ratios for angles greater than 90 degrees in unit circleHow does the unit circle work for trigonometric ratios of obtuse angles?Why we need an angle to for trig ratios?

What is the proper term for etching or digging of wall to hide conduit of cables

Did any compiler fully use 80-bit floating point?

Statistical analysis applied to methods coming out of Machine Learning

Centre cell vertically in tabularx

One-one communication

Keep at all times, the minus sign above aligned with minus sign below

.bashrc alias for a command with fixed second parameter

What are some likely causes to domain member PC losing contact to domain controller?

Does the universe have a fixed centre of mass?

Do i imagine the linear (straight line) homotopy in a correct way?

Is a copyright notice with a non-existent name be invalid?

How do I say "this must not happen"?

Is the Mordenkainen's Sword spell underpowered?

An isoperimetric-type inequality inside a cube

How do you cope with tons of web fonts when copying and pasting from web pages?

French equivalents of おしゃれは足元から (Every good outfit starts with the shoes)

Short story about astronauts fertilizing soil with their own bodies

Fit odd number of triplets in a measure?

When does a function NOT have an antiderivative?

Why not use the yoke to control yaw, as well as pitch and roll?

Plotting a Maclaurin series

3D Masyu - A Die

Improvising over quartal voicings

By what mechanism was the 2017 UK General Election called?



calculator's angle answer for trig ratios that can work in more than 1 quadrant on the unit circle



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Understanding inverse trigonometric relationsFinding a point on the unit circle; more specifically, what quadrant it is inBroken Calculator: only certain unary functions work.How does the unit circle work for trigonometric ratios of non-acute angles?unit circle trigonometry where angle is greater than 90 degrees.Why are the Trig functions defined by the counterclockwise path of a circle?Trigonometric Ratios for angles greater than 90 degrees and the Unit CircleIf $sinx=t, quad xin(frac3pi2,2pi),$ what is $tanx?$Trigonometric Ratios for angles greater than 90 degrees in unit circleHow does the unit circle work for trigonometric ratios of obtuse angles?Why we need an angle to for trig ratios?










5












$begingroup$


  1. Why does the calculator do a cc (counterclockwise) rotation for positive trig ratios instead of clockwise,


  2. and a clockwise rotation for negative sine & tan instead of cc


  3. and a counterclockwise rotation for negative cos ratios instead of a clockwise


ie. in degree mode



$cos^-1(-5/12)=114.62$



$sin^-1(-5/12)=-24.62$



$tan^-1(-5/12)=-22.61$



Is it maybe picking the value that involves the least amount of computing power? or is it a matter of convention? or am I overlooking something?










share|cite|improve this question









New contributor




Allan Henriques is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 1




    $begingroup$
    Conventionally, counter clockwise rotations are described by positive angles. But it looks like your question is more about the ranges of the inverse trigonometric functions.
    $endgroup$
    – John Doe
    3 hours ago







  • 2




    $begingroup$
    Try using Mathjax: Surround your formulas with $ signs, use before a trig function, and between the start and end of a superscript. E.g. $cos^-1(-5/12)=114.62$
    $endgroup$
    – man on laptop
    3 hours ago











  • $begingroup$
    This tutorial explains how to typeset mathematics on this site.
    $endgroup$
    – N. F. Taussig
    2 hours ago















5












$begingroup$


  1. Why does the calculator do a cc (counterclockwise) rotation for positive trig ratios instead of clockwise,


  2. and a clockwise rotation for negative sine & tan instead of cc


  3. and a counterclockwise rotation for negative cos ratios instead of a clockwise


ie. in degree mode



$cos^-1(-5/12)=114.62$



$sin^-1(-5/12)=-24.62$



$tan^-1(-5/12)=-22.61$



Is it maybe picking the value that involves the least amount of computing power? or is it a matter of convention? or am I overlooking something?










share|cite|improve this question









New contributor




Allan Henriques is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 1




    $begingroup$
    Conventionally, counter clockwise rotations are described by positive angles. But it looks like your question is more about the ranges of the inverse trigonometric functions.
    $endgroup$
    – John Doe
    3 hours ago







  • 2




    $begingroup$
    Try using Mathjax: Surround your formulas with $ signs, use before a trig function, and between the start and end of a superscript. E.g. $cos^-1(-5/12)=114.62$
    $endgroup$
    – man on laptop
    3 hours ago











  • $begingroup$
    This tutorial explains how to typeset mathematics on this site.
    $endgroup$
    – N. F. Taussig
    2 hours ago













5












5








5





$begingroup$


  1. Why does the calculator do a cc (counterclockwise) rotation for positive trig ratios instead of clockwise,


  2. and a clockwise rotation for negative sine & tan instead of cc


  3. and a counterclockwise rotation for negative cos ratios instead of a clockwise


ie. in degree mode



$cos^-1(-5/12)=114.62$



$sin^-1(-5/12)=-24.62$



$tan^-1(-5/12)=-22.61$



Is it maybe picking the value that involves the least amount of computing power? or is it a matter of convention? or am I overlooking something?










share|cite|improve this question









New contributor




Allan Henriques is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




  1. Why does the calculator do a cc (counterclockwise) rotation for positive trig ratios instead of clockwise,


  2. and a clockwise rotation for negative sine & tan instead of cc


  3. and a counterclockwise rotation for negative cos ratios instead of a clockwise


ie. in degree mode



$cos^-1(-5/12)=114.62$



$sin^-1(-5/12)=-24.62$



$tan^-1(-5/12)=-22.61$



Is it maybe picking the value that involves the least amount of computing power? or is it a matter of convention? or am I overlooking something?







trigonometry






share|cite|improve this question









New contributor




Allan Henriques is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




Allan Henriques is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited 2 hours ago









N. F. Taussig

45.5k103358




45.5k103358






New contributor




Allan Henriques is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 3 hours ago









Allan HenriquesAllan Henriques

283




283




New contributor




Allan Henriques is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Allan Henriques is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Allan Henriques is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







  • 1




    $begingroup$
    Conventionally, counter clockwise rotations are described by positive angles. But it looks like your question is more about the ranges of the inverse trigonometric functions.
    $endgroup$
    – John Doe
    3 hours ago







  • 2




    $begingroup$
    Try using Mathjax: Surround your formulas with $ signs, use before a trig function, and between the start and end of a superscript. E.g. $cos^-1(-5/12)=114.62$
    $endgroup$
    – man on laptop
    3 hours ago











  • $begingroup$
    This tutorial explains how to typeset mathematics on this site.
    $endgroup$
    – N. F. Taussig
    2 hours ago












  • 1




    $begingroup$
    Conventionally, counter clockwise rotations are described by positive angles. But it looks like your question is more about the ranges of the inverse trigonometric functions.
    $endgroup$
    – John Doe
    3 hours ago







  • 2




    $begingroup$
    Try using Mathjax: Surround your formulas with $ signs, use before a trig function, and between the start and end of a superscript. E.g. $cos^-1(-5/12)=114.62$
    $endgroup$
    – man on laptop
    3 hours ago











  • $begingroup$
    This tutorial explains how to typeset mathematics on this site.
    $endgroup$
    – N. F. Taussig
    2 hours ago







1




1




$begingroup$
Conventionally, counter clockwise rotations are described by positive angles. But it looks like your question is more about the ranges of the inverse trigonometric functions.
$endgroup$
– John Doe
3 hours ago





$begingroup$
Conventionally, counter clockwise rotations are described by positive angles. But it looks like your question is more about the ranges of the inverse trigonometric functions.
$endgroup$
– John Doe
3 hours ago





2




2




$begingroup$
Try using Mathjax: Surround your formulas with $ signs, use before a trig function, and between the start and end of a superscript. E.g. $cos^-1(-5/12)=114.62$
$endgroup$
– man on laptop
3 hours ago





$begingroup$
Try using Mathjax: Surround your formulas with $ signs, use before a trig function, and between the start and end of a superscript. E.g. $cos^-1(-5/12)=114.62$
$endgroup$
– man on laptop
3 hours ago













$begingroup$
This tutorial explains how to typeset mathematics on this site.
$endgroup$
– N. F. Taussig
2 hours ago




$begingroup$
This tutorial explains how to typeset mathematics on this site.
$endgroup$
– N. F. Taussig
2 hours ago










1 Answer
1






active

oldest

votes


















3












$begingroup$

This actually has to do with the way inverse trig functions are defined. For a function to be invertible there must be one input for every output. Graphically, this is equivalent to passing the horizontal line test. Now, trig functions are periodic and as such are very much not invertible. The way we get around this is to restrict the domain of each function to a region that passes the horizontal line test.



For $sin(x)$ the region that we take is $-fracpi2leq x leq fracpi2$, or $-90^circ leq x leq 90^circ$ in degree mode, as seen in the following plot:



enter image description here



For $cos(x)$ the region we take is $0leq x leq pi$, or $0^circ leq x leq 180^circ$ in degree mode. Note that we could also have taken $-pi leq x leq 0$, but for convenience we take $x$ to be a positive angle.



enter image description here



Lastly, for $tan(x)$ we can take a full period around the origin, so $-fracpi2 leq x leq fracpi2$, or $-90^circ leq x leq 90^circ$ in degree mode.



enter image description here






share|cite|improve this answer









$endgroup$








  • 2




    $begingroup$
    That makes complete sense! When you see the graph of the functions, sure enough they give out the reasons why the calculators give out the answers they do.
    $endgroup$
    – bjcolby15
    2 hours ago











Your Answer








StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);






Allan Henriques is a new contributor. Be nice, and check out our Code of Conduct.









draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3196538%2fcalculators-angle-answer-for-trig-ratios-that-can-work-in-more-than-1-quadrant%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









3












$begingroup$

This actually has to do with the way inverse trig functions are defined. For a function to be invertible there must be one input for every output. Graphically, this is equivalent to passing the horizontal line test. Now, trig functions are periodic and as such are very much not invertible. The way we get around this is to restrict the domain of each function to a region that passes the horizontal line test.



For $sin(x)$ the region that we take is $-fracpi2leq x leq fracpi2$, or $-90^circ leq x leq 90^circ$ in degree mode, as seen in the following plot:



enter image description here



For $cos(x)$ the region we take is $0leq x leq pi$, or $0^circ leq x leq 180^circ$ in degree mode. Note that we could also have taken $-pi leq x leq 0$, but for convenience we take $x$ to be a positive angle.



enter image description here



Lastly, for $tan(x)$ we can take a full period around the origin, so $-fracpi2 leq x leq fracpi2$, or $-90^circ leq x leq 90^circ$ in degree mode.



enter image description here






share|cite|improve this answer









$endgroup$








  • 2




    $begingroup$
    That makes complete sense! When you see the graph of the functions, sure enough they give out the reasons why the calculators give out the answers they do.
    $endgroup$
    – bjcolby15
    2 hours ago















3












$begingroup$

This actually has to do with the way inverse trig functions are defined. For a function to be invertible there must be one input for every output. Graphically, this is equivalent to passing the horizontal line test. Now, trig functions are periodic and as such are very much not invertible. The way we get around this is to restrict the domain of each function to a region that passes the horizontal line test.



For $sin(x)$ the region that we take is $-fracpi2leq x leq fracpi2$, or $-90^circ leq x leq 90^circ$ in degree mode, as seen in the following plot:



enter image description here



For $cos(x)$ the region we take is $0leq x leq pi$, or $0^circ leq x leq 180^circ$ in degree mode. Note that we could also have taken $-pi leq x leq 0$, but for convenience we take $x$ to be a positive angle.



enter image description here



Lastly, for $tan(x)$ we can take a full period around the origin, so $-fracpi2 leq x leq fracpi2$, or $-90^circ leq x leq 90^circ$ in degree mode.



enter image description here






share|cite|improve this answer









$endgroup$








  • 2




    $begingroup$
    That makes complete sense! When you see the graph of the functions, sure enough they give out the reasons why the calculators give out the answers they do.
    $endgroup$
    – bjcolby15
    2 hours ago













3












3








3





$begingroup$

This actually has to do with the way inverse trig functions are defined. For a function to be invertible there must be one input for every output. Graphically, this is equivalent to passing the horizontal line test. Now, trig functions are periodic and as such are very much not invertible. The way we get around this is to restrict the domain of each function to a region that passes the horizontal line test.



For $sin(x)$ the region that we take is $-fracpi2leq x leq fracpi2$, or $-90^circ leq x leq 90^circ$ in degree mode, as seen in the following plot:



enter image description here



For $cos(x)$ the region we take is $0leq x leq pi$, or $0^circ leq x leq 180^circ$ in degree mode. Note that we could also have taken $-pi leq x leq 0$, but for convenience we take $x$ to be a positive angle.



enter image description here



Lastly, for $tan(x)$ we can take a full period around the origin, so $-fracpi2 leq x leq fracpi2$, or $-90^circ leq x leq 90^circ$ in degree mode.



enter image description here






share|cite|improve this answer









$endgroup$



This actually has to do with the way inverse trig functions are defined. For a function to be invertible there must be one input for every output. Graphically, this is equivalent to passing the horizontal line test. Now, trig functions are periodic and as such are very much not invertible. The way we get around this is to restrict the domain of each function to a region that passes the horizontal line test.



For $sin(x)$ the region that we take is $-fracpi2leq x leq fracpi2$, or $-90^circ leq x leq 90^circ$ in degree mode, as seen in the following plot:



enter image description here



For $cos(x)$ the region we take is $0leq x leq pi$, or $0^circ leq x leq 180^circ$ in degree mode. Note that we could also have taken $-pi leq x leq 0$, but for convenience we take $x$ to be a positive angle.



enter image description here



Lastly, for $tan(x)$ we can take a full period around the origin, so $-fracpi2 leq x leq fracpi2$, or $-90^circ leq x leq 90^circ$ in degree mode.



enter image description here







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered 2 hours ago









DMcMorDMcMor

2,99321328




2,99321328







  • 2




    $begingroup$
    That makes complete sense! When you see the graph of the functions, sure enough they give out the reasons why the calculators give out the answers they do.
    $endgroup$
    – bjcolby15
    2 hours ago












  • 2




    $begingroup$
    That makes complete sense! When you see the graph of the functions, sure enough they give out the reasons why the calculators give out the answers they do.
    $endgroup$
    – bjcolby15
    2 hours ago







2




2




$begingroup$
That makes complete sense! When you see the graph of the functions, sure enough they give out the reasons why the calculators give out the answers they do.
$endgroup$
– bjcolby15
2 hours ago




$begingroup$
That makes complete sense! When you see the graph of the functions, sure enough they give out the reasons why the calculators give out the answers they do.
$endgroup$
– bjcolby15
2 hours ago










Allan Henriques is a new contributor. Be nice, and check out our Code of Conduct.









draft saved

draft discarded


















Allan Henriques is a new contributor. Be nice, and check out our Code of Conduct.












Allan Henriques is a new contributor. Be nice, and check out our Code of Conduct.











Allan Henriques is a new contributor. Be nice, and check out our Code of Conduct.














Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3196538%2fcalculators-angle-answer-for-trig-ratios-that-can-work-in-more-than-1-quadrant%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

名間水力發電廠 目录 沿革 設施 鄰近設施 註釋 外部連結 导航菜单23°50′10″N 120°42′41″E / 23.83611°N 120.71139°E / 23.83611; 120.7113923°50′10″N 120°42′41″E / 23.83611°N 120.71139°E / 23.83611; 120.71139計畫概要原始内容臺灣第一座BOT 模式開發的水力發電廠-名間水力電廠名間水力發電廠 水利署首件BOT案原始内容《小檔案》名間電廠 首座BOT水力發電廠原始内容名間電廠BOT - 經濟部水利署中區水資源局

Prove that NP is closed under karp reduction?Space(n) not closed under Karp reductions - what about NTime(n)?Class P is closed under rotation?Prove or disprove that $NL$ is closed under polynomial many-one reductions$mathbfNC_2$ is closed under log-space reductionOn Karp reductionwhen can I know if a class (complexity) is closed under reduction (cook/karp)Check if class $PSPACE$ is closed under polyonomially space reductionIs NPSPACE also closed under polynomial-time reduction and under log-space reduction?Prove PSPACE is closed under complement?Prove PSPACE is closed under union?

Is my guitar’s action too high? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Strings too stiff on a recently purchased acoustic guitar | Cort AD880CEIs the action of my guitar really high?Μy little finger is too weak to play guitarWith guitar, how long should I give my fingers to strengthen / callous?When playing a fret the guitar sounds mutedPlaying (Barre) chords up the guitar neckI think my guitar strings are wound too tight and I can't play barre chordsF barre chord on an SG guitarHow to find to the right strings of a barre chord by feel?High action on higher fret on my steel acoustic guitar