Find the number of surjections from A to B.Pascal's relation theorem from the book Combinatorics, R. Merris; need some help in clarificationCombinatorics: How many solns to equation? (principle of inclusion / exclusion)Get the number of subset.Comparing probabilities of drawing balls of certain color, with and without replacementDifferent ways of picking sets producing different results?Number of possibilities of permutation with repetitions with additional equal elements addedStuck trying to understand N Choose K formulaUnderstanding difference between ordered sequences with repetition and unordered sequences with repetitionIs there a relation between the triangular numbers and the combinations with repetition?A subset of three distinct positive integers, each less than 20, is selected. How many subsets will contain exactly one even number?

When blogging recipes, how can I support both readers who want the narrative/journey and ones who want the printer-friendly recipe?

Email Account under attack (really) - anything I can do?

I see my dog run

Is a vector space a subspace of itself?

What are the advantages and disadvantages of running one shots compared to campaigns?

Need help identifying/translating a plaque in Tangier, Morocco

What to wear for invited talk in Canada

Finding files for which a command fails

Shall I use personal or official e-mail account when registering to external websites for work purpose?

What is the offset in a seaplane's hull?

Is it legal to have the "// (c) 2019 John Smith" header in all files when there are hundreds of contributors?

Can a planet have a different gravitational pull depending on its location in orbit around its sun?

Unbreakable Formation vs. Cry of the Carnarium

Why was the "bread communication" in the arena of Catching Fire left out in the movie?

Was there ever an axiom rendered a theorem?

Is there a name of the flying bionic bird?

Is ipsum/ipsa/ipse a third person pronoun, or can it serve other functions?

How to make payment on the internet without leaving a money trail?

aging parents with no investments

What is it called when one voice type sings a 'solo'?

What do the Banks children have against barley water?

How can I plot a Farey diagram?

COUNT(*) or MAX(id) - which is faster?

Are white and non-white police officers equally likely to kill black suspects?



Find the number of surjections from A to B.


Pascal's relation theorem from the book Combinatorics, R. Merris; need some help in clarificationCombinatorics: How many solns to equation? (principle of inclusion / exclusion)Get the number of subset.Comparing probabilities of drawing balls of certain color, with and without replacementDifferent ways of picking sets producing different results?Number of possibilities of permutation with repetitions with additional equal elements addedStuck trying to understand N Choose K formulaUnderstanding difference between ordered sequences with repetition and unordered sequences with repetitionIs there a relation between the triangular numbers and the combinations with repetition?A subset of three distinct positive integers, each less than 20, is selected. How many subsets will contain exactly one even number?













2












$begingroup$


Where A = 1,2,3,4,5,6 and B = a,b,c,d,e.



My book says it's:



  1. Select a two-element subset of A.

  2. Assign images without repetition to the two-element subset and the four
    remaining individual elements of A.

This shows that the total number of surjections from A to B is C(6, 2)5! = 1800.



I'm confused at why it's multiplied by 5! and not by 4!. Also in part 2, when we assign images, do they mean images in B?










share|cite|improve this question









$endgroup$











  • $begingroup$
    There are $5$ objects, not $4$. One object is the double, but that doesn't change anything,
    $endgroup$
    – lulu
    3 hours ago










  • $begingroup$
    I thought since we have a subset of 2, we multiply by 4! since there are 4 elements left in A.
    $endgroup$
    – Zaku
    3 hours ago






  • 1




    $begingroup$
    It's not a question of what's left in $A$. Having paired, say, $1,2$ we now need to count the surjections of $P,3,4,5,6$ onto $a,b,c,d,e$, where $P$ denotes the pair $(1,2)$. There are clearly $5!$ such surjections.
    $endgroup$
    – lulu
    3 hours ago










  • $begingroup$
    " I thought ..., we multiply by 4! since there are 4 elements left in A." But you haven't chosen which of the 5 elements that subset of 2 map to. Would it make more sense if we said the (number of ways to chose the two that aren't distinct)(choices for that pair)(choices for what is left) $=6choose 2*5*4! $? That's actually the same thing as (number of ways to chose the two that aren't distinct)(number of choices for the four distinct and the pair)$=6choose 2*5! $.
    $endgroup$
    – fleablood
    3 hours ago















2












$begingroup$


Where A = 1,2,3,4,5,6 and B = a,b,c,d,e.



My book says it's:



  1. Select a two-element subset of A.

  2. Assign images without repetition to the two-element subset and the four
    remaining individual elements of A.

This shows that the total number of surjections from A to B is C(6, 2)5! = 1800.



I'm confused at why it's multiplied by 5! and not by 4!. Also in part 2, when we assign images, do they mean images in B?










share|cite|improve this question









$endgroup$











  • $begingroup$
    There are $5$ objects, not $4$. One object is the double, but that doesn't change anything,
    $endgroup$
    – lulu
    3 hours ago










  • $begingroup$
    I thought since we have a subset of 2, we multiply by 4! since there are 4 elements left in A.
    $endgroup$
    – Zaku
    3 hours ago






  • 1




    $begingroup$
    It's not a question of what's left in $A$. Having paired, say, $1,2$ we now need to count the surjections of $P,3,4,5,6$ onto $a,b,c,d,e$, where $P$ denotes the pair $(1,2)$. There are clearly $5!$ such surjections.
    $endgroup$
    – lulu
    3 hours ago










  • $begingroup$
    " I thought ..., we multiply by 4! since there are 4 elements left in A." But you haven't chosen which of the 5 elements that subset of 2 map to. Would it make more sense if we said the (number of ways to chose the two that aren't distinct)(choices for that pair)(choices for what is left) $=6choose 2*5*4! $? That's actually the same thing as (number of ways to chose the two that aren't distinct)(number of choices for the four distinct and the pair)$=6choose 2*5! $.
    $endgroup$
    – fleablood
    3 hours ago













2












2








2


2



$begingroup$


Where A = 1,2,3,4,5,6 and B = a,b,c,d,e.



My book says it's:



  1. Select a two-element subset of A.

  2. Assign images without repetition to the two-element subset and the four
    remaining individual elements of A.

This shows that the total number of surjections from A to B is C(6, 2)5! = 1800.



I'm confused at why it's multiplied by 5! and not by 4!. Also in part 2, when we assign images, do they mean images in B?










share|cite|improve this question









$endgroup$




Where A = 1,2,3,4,5,6 and B = a,b,c,d,e.



My book says it's:



  1. Select a two-element subset of A.

  2. Assign images without repetition to the two-element subset and the four
    remaining individual elements of A.

This shows that the total number of surjections from A to B is C(6, 2)5! = 1800.



I'm confused at why it's multiplied by 5! and not by 4!. Also in part 2, when we assign images, do they mean images in B?







combinatorics






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 3 hours ago









ZakuZaku

1879




1879











  • $begingroup$
    There are $5$ objects, not $4$. One object is the double, but that doesn't change anything,
    $endgroup$
    – lulu
    3 hours ago










  • $begingroup$
    I thought since we have a subset of 2, we multiply by 4! since there are 4 elements left in A.
    $endgroup$
    – Zaku
    3 hours ago






  • 1




    $begingroup$
    It's not a question of what's left in $A$. Having paired, say, $1,2$ we now need to count the surjections of $P,3,4,5,6$ onto $a,b,c,d,e$, where $P$ denotes the pair $(1,2)$. There are clearly $5!$ such surjections.
    $endgroup$
    – lulu
    3 hours ago










  • $begingroup$
    " I thought ..., we multiply by 4! since there are 4 elements left in A." But you haven't chosen which of the 5 elements that subset of 2 map to. Would it make more sense if we said the (number of ways to chose the two that aren't distinct)(choices for that pair)(choices for what is left) $=6choose 2*5*4! $? That's actually the same thing as (number of ways to chose the two that aren't distinct)(number of choices for the four distinct and the pair)$=6choose 2*5! $.
    $endgroup$
    – fleablood
    3 hours ago
















  • $begingroup$
    There are $5$ objects, not $4$. One object is the double, but that doesn't change anything,
    $endgroup$
    – lulu
    3 hours ago










  • $begingroup$
    I thought since we have a subset of 2, we multiply by 4! since there are 4 elements left in A.
    $endgroup$
    – Zaku
    3 hours ago






  • 1




    $begingroup$
    It's not a question of what's left in $A$. Having paired, say, $1,2$ we now need to count the surjections of $P,3,4,5,6$ onto $a,b,c,d,e$, where $P$ denotes the pair $(1,2)$. There are clearly $5!$ such surjections.
    $endgroup$
    – lulu
    3 hours ago










  • $begingroup$
    " I thought ..., we multiply by 4! since there are 4 elements left in A." But you haven't chosen which of the 5 elements that subset of 2 map to. Would it make more sense if we said the (number of ways to chose the two that aren't distinct)(choices for that pair)(choices for what is left) $=6choose 2*5*4! $? That's actually the same thing as (number of ways to chose the two that aren't distinct)(number of choices for the four distinct and the pair)$=6choose 2*5! $.
    $endgroup$
    – fleablood
    3 hours ago















$begingroup$
There are $5$ objects, not $4$. One object is the double, but that doesn't change anything,
$endgroup$
– lulu
3 hours ago




$begingroup$
There are $5$ objects, not $4$. One object is the double, but that doesn't change anything,
$endgroup$
– lulu
3 hours ago












$begingroup$
I thought since we have a subset of 2, we multiply by 4! since there are 4 elements left in A.
$endgroup$
– Zaku
3 hours ago




$begingroup$
I thought since we have a subset of 2, we multiply by 4! since there are 4 elements left in A.
$endgroup$
– Zaku
3 hours ago




1




1




$begingroup$
It's not a question of what's left in $A$. Having paired, say, $1,2$ we now need to count the surjections of $P,3,4,5,6$ onto $a,b,c,d,e$, where $P$ denotes the pair $(1,2)$. There are clearly $5!$ such surjections.
$endgroup$
– lulu
3 hours ago




$begingroup$
It's not a question of what's left in $A$. Having paired, say, $1,2$ we now need to count the surjections of $P,3,4,5,6$ onto $a,b,c,d,e$, where $P$ denotes the pair $(1,2)$. There are clearly $5!$ such surjections.
$endgroup$
– lulu
3 hours ago












$begingroup$
" I thought ..., we multiply by 4! since there are 4 elements left in A." But you haven't chosen which of the 5 elements that subset of 2 map to. Would it make more sense if we said the (number of ways to chose the two that aren't distinct)(choices for that pair)(choices for what is left) $=6choose 2*5*4! $? That's actually the same thing as (number of ways to chose the two that aren't distinct)(number of choices for the four distinct and the pair)$=6choose 2*5! $.
$endgroup$
– fleablood
3 hours ago




$begingroup$
" I thought ..., we multiply by 4! since there are 4 elements left in A." But you haven't chosen which of the 5 elements that subset of 2 map to. Would it make more sense if we said the (number of ways to chose the two that aren't distinct)(choices for that pair)(choices for what is left) $=6choose 2*5*4! $? That's actually the same thing as (number of ways to chose the two that aren't distinct)(number of choices for the four distinct and the pair)$=6choose 2*5! $.
$endgroup$
– fleablood
3 hours ago










3 Answers
3






active

oldest

votes


















2












$begingroup$

How many ways can $A$ be partitioned into $5$ blocks?



Answer: $binom62 = 15$



Given any $5text-block$ partition of $A$, in how many ways can the blocks be bijectively
assigned to the $5$ element set $B$?



Answer: $5! =120$



How many surjective functions from $A$ onto $B$ are there?



Answer: $15 times 120 = 1800$






share|cite|improve this answer









$endgroup$




















    2












    $begingroup$

    Think of it this way:



    There is a pair of terms that get mapped to the same element. Call that pair $alpha $. There are four terms remaining. Call them $beta,gamma,delta$ and $epsilon $.



    There are $6choose 2 $ possible pairs that can be $alpha $.



    And we must map $alpha,beta,gamma,delta,epsilon $ to $a,b,c,d,e $. There is $5! $ ways to do that.






    share|cite|improve this answer









    $endgroup$




















      1












      $begingroup$

      Select a $2$-member $A_1subset A.$ There are $binom 62$ ways to do this. Select a $1$-member $B_1subset B.$ There are $binom 51$ ways to do this. For each pair $(A_1,B_1)$ there are $4!$ surjections $f:Ato B$ such that $f(x):xin A_1=B_1.$ So we get a total of $binom 62binom 514!=(15)(5)(4!)=(15)(5!)=1800.$






      share|cite|improve this answer









      $endgroup$













        Your Answer





        StackExchange.ifUsing("editor", function ()
        return StackExchange.using("mathjaxEditing", function ()
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        );
        );
        , "mathjax-editing");

        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "69"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader:
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        ,
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );













        draft saved

        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3180474%2ffind-the-number-of-surjections-from-a-to-b%23new-answer', 'question_page');

        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        2












        $begingroup$

        How many ways can $A$ be partitioned into $5$ blocks?



        Answer: $binom62 = 15$



        Given any $5text-block$ partition of $A$, in how many ways can the blocks be bijectively
        assigned to the $5$ element set $B$?



        Answer: $5! =120$



        How many surjective functions from $A$ onto $B$ are there?



        Answer: $15 times 120 = 1800$






        share|cite|improve this answer









        $endgroup$

















          2












          $begingroup$

          How many ways can $A$ be partitioned into $5$ blocks?



          Answer: $binom62 = 15$



          Given any $5text-block$ partition of $A$, in how many ways can the blocks be bijectively
          assigned to the $5$ element set $B$?



          Answer: $5! =120$



          How many surjective functions from $A$ onto $B$ are there?



          Answer: $15 times 120 = 1800$






          share|cite|improve this answer









          $endgroup$















            2












            2








            2





            $begingroup$

            How many ways can $A$ be partitioned into $5$ blocks?



            Answer: $binom62 = 15$



            Given any $5text-block$ partition of $A$, in how many ways can the blocks be bijectively
            assigned to the $5$ element set $B$?



            Answer: $5! =120$



            How many surjective functions from $A$ onto $B$ are there?



            Answer: $15 times 120 = 1800$






            share|cite|improve this answer









            $endgroup$



            How many ways can $A$ be partitioned into $5$ blocks?



            Answer: $binom62 = 15$



            Given any $5text-block$ partition of $A$, in how many ways can the blocks be bijectively
            assigned to the $5$ element set $B$?



            Answer: $5! =120$



            How many surjective functions from $A$ onto $B$ are there?



            Answer: $15 times 120 = 1800$







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered 3 hours ago









            CopyPasteItCopyPasteIt

            4,3271828




            4,3271828





















                2












                $begingroup$

                Think of it this way:



                There is a pair of terms that get mapped to the same element. Call that pair $alpha $. There are four terms remaining. Call them $beta,gamma,delta$ and $epsilon $.



                There are $6choose 2 $ possible pairs that can be $alpha $.



                And we must map $alpha,beta,gamma,delta,epsilon $ to $a,b,c,d,e $. There is $5! $ ways to do that.






                share|cite|improve this answer









                $endgroup$

















                  2












                  $begingroup$

                  Think of it this way:



                  There is a pair of terms that get mapped to the same element. Call that pair $alpha $. There are four terms remaining. Call them $beta,gamma,delta$ and $epsilon $.



                  There are $6choose 2 $ possible pairs that can be $alpha $.



                  And we must map $alpha,beta,gamma,delta,epsilon $ to $a,b,c,d,e $. There is $5! $ ways to do that.






                  share|cite|improve this answer









                  $endgroup$















                    2












                    2








                    2





                    $begingroup$

                    Think of it this way:



                    There is a pair of terms that get mapped to the same element. Call that pair $alpha $. There are four terms remaining. Call them $beta,gamma,delta$ and $epsilon $.



                    There are $6choose 2 $ possible pairs that can be $alpha $.



                    And we must map $alpha,beta,gamma,delta,epsilon $ to $a,b,c,d,e $. There is $5! $ ways to do that.






                    share|cite|improve this answer









                    $endgroup$



                    Think of it this way:



                    There is a pair of terms that get mapped to the same element. Call that pair $alpha $. There are four terms remaining. Call them $beta,gamma,delta$ and $epsilon $.



                    There are $6choose 2 $ possible pairs that can be $alpha $.



                    And we must map $alpha,beta,gamma,delta,epsilon $ to $a,b,c,d,e $. There is $5! $ ways to do that.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered 3 hours ago









                    fleabloodfleablood

                    73.9k22891




                    73.9k22891





















                        1












                        $begingroup$

                        Select a $2$-member $A_1subset A.$ There are $binom 62$ ways to do this. Select a $1$-member $B_1subset B.$ There are $binom 51$ ways to do this. For each pair $(A_1,B_1)$ there are $4!$ surjections $f:Ato B$ such that $f(x):xin A_1=B_1.$ So we get a total of $binom 62binom 514!=(15)(5)(4!)=(15)(5!)=1800.$






                        share|cite|improve this answer









                        $endgroup$

















                          1












                          $begingroup$

                          Select a $2$-member $A_1subset A.$ There are $binom 62$ ways to do this. Select a $1$-member $B_1subset B.$ There are $binom 51$ ways to do this. For each pair $(A_1,B_1)$ there are $4!$ surjections $f:Ato B$ such that $f(x):xin A_1=B_1.$ So we get a total of $binom 62binom 514!=(15)(5)(4!)=(15)(5!)=1800.$






                          share|cite|improve this answer









                          $endgroup$















                            1












                            1








                            1





                            $begingroup$

                            Select a $2$-member $A_1subset A.$ There are $binom 62$ ways to do this. Select a $1$-member $B_1subset B.$ There are $binom 51$ ways to do this. For each pair $(A_1,B_1)$ there are $4!$ surjections $f:Ato B$ such that $f(x):xin A_1=B_1.$ So we get a total of $binom 62binom 514!=(15)(5)(4!)=(15)(5!)=1800.$






                            share|cite|improve this answer









                            $endgroup$



                            Select a $2$-member $A_1subset A.$ There are $binom 62$ ways to do this. Select a $1$-member $B_1subset B.$ There are $binom 51$ ways to do this. For each pair $(A_1,B_1)$ there are $4!$ surjections $f:Ato B$ such that $f(x):xin A_1=B_1.$ So we get a total of $binom 62binom 514!=(15)(5)(4!)=(15)(5!)=1800.$







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered 18 mins ago









                            DanielWainfleetDanielWainfleet

                            35.8k31648




                            35.8k31648



























                                draft saved

                                draft discarded
















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid


                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.

                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3180474%2ffind-the-number-of-surjections-from-a-to-b%23new-answer', 'question_page');

                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                名間水力發電廠 目录 沿革 設施 鄰近設施 註釋 外部連結 导航菜单23°50′10″N 120°42′41″E / 23.83611°N 120.71139°E / 23.83611; 120.7113923°50′10″N 120°42′41″E / 23.83611°N 120.71139°E / 23.83611; 120.71139計畫概要原始内容臺灣第一座BOT 模式開發的水力發電廠-名間水力電廠名間水力發電廠 水利署首件BOT案原始内容《小檔案》名間電廠 首座BOT水力發電廠原始内容名間電廠BOT - 經濟部水利署中區水資源局

                                Prove that NP is closed under karp reduction?Space(n) not closed under Karp reductions - what about NTime(n)?Class P is closed under rotation?Prove or disprove that $NL$ is closed under polynomial many-one reductions$mathbfNC_2$ is closed under log-space reductionOn Karp reductionwhen can I know if a class (complexity) is closed under reduction (cook/karp)Check if class $PSPACE$ is closed under polyonomially space reductionIs NPSPACE also closed under polynomial-time reduction and under log-space reduction?Prove PSPACE is closed under complement?Prove PSPACE is closed under union?

                                Is my guitar’s action too high? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Strings too stiff on a recently purchased acoustic guitar | Cort AD880CEIs the action of my guitar really high?Μy little finger is too weak to play guitarWith guitar, how long should I give my fingers to strengthen / callous?When playing a fret the guitar sounds mutedPlaying (Barre) chords up the guitar neckI think my guitar strings are wound too tight and I can't play barre chordsF barre chord on an SG guitarHow to find to the right strings of a barre chord by feel?High action on higher fret on my steel acoustic guitar