How can I plot a Farey diagram?How to make this beautiful animationPlotting an epicycloidGenerating a topological space diagram for an n-element setMathematica code for Bifurcation DiagramHow to draw a contour diagram in Mathematica?How to draw timing diagram from a list of values?Expressing a series formulaBifurcation diagram for Piecewise functionHow to draw a clock-diagram?How can I plot a space time diagram in mathematica?Plotting classical polymer modelA problem in bifurcation diagram

Patience, young "Padovan"

Finding files for which a command fails

What do you call something that goes against the spirit of the law, but is legal when interpreting the law to the letter?

"My colleague's body is amazing"

Manga about a female worker who got dragged into another world together with this high school girl and she was just told she's not needed anymore

How to move the player while also allowing forces to affect it

Why do UK politicians seemingly ignore opinion polls on Brexit?

Copycat chess is back

Is there any use for defining additional entity types in a SOQL FROM clause?

What does "enim et" mean?

If a centaur druid Wild Shapes into a Giant Elk, do their Charge features stack?

Does the average primeness of natural numbers tend to zero?

How did the USSR manage to innovate in an environment characterized by government censorship and high bureaucracy?

Why airport relocation isn't done gradually?

Does bootstrapped regression allow for inference?

Could a US political party gain complete control over the government by removing checks & balances?

Crop image to path created in TikZ?

What does it exactly mean if a random variable follows a distribution

How to make particles emit from certain parts of a 3D object?

Can a planet have a different gravitational pull depending on its location in orbit around its sun?

Is every set a filtered colimit of finite sets?

Are white and non-white police officers equally likely to kill black suspects?

Information to fellow intern about hiring?

Prime joint compound before latex paint?



How can I plot a Farey diagram?


How to make this beautiful animationPlotting an epicycloidGenerating a topological space diagram for an n-element setMathematica code for Bifurcation DiagramHow to draw a contour diagram in Mathematica?How to draw timing diagram from a list of values?Expressing a series formulaBifurcation diagram for Piecewise functionHow to draw a clock-diagram?How can I plot a space time diagram in mathematica?Plotting classical polymer modelA problem in bifurcation diagram













2












$begingroup$


How can I plot the following diagram for a Farey series?



enter image description here










share|improve this question









New contributor




Gustavo Rubiano is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    From the beautiful book A. Hatcher Topology of numbers
    $endgroup$
    – Gustavo Rubiano
    6 hours ago










  • $begingroup$
    Could you perhaps expand a bit on how the curves are calculated etc?
    $endgroup$
    – MarcoB
    6 hours ago










  • $begingroup$
    pi.math.cornell.edu/~hatcher/TN/TNch1.pdf
    $endgroup$
    – Moo
    4 hours ago















2












$begingroup$


How can I plot the following diagram for a Farey series?



enter image description here










share|improve this question









New contributor




Gustavo Rubiano is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    From the beautiful book A. Hatcher Topology of numbers
    $endgroup$
    – Gustavo Rubiano
    6 hours ago










  • $begingroup$
    Could you perhaps expand a bit on how the curves are calculated etc?
    $endgroup$
    – MarcoB
    6 hours ago










  • $begingroup$
    pi.math.cornell.edu/~hatcher/TN/TNch1.pdf
    $endgroup$
    – Moo
    4 hours ago













2












2








2


1



$begingroup$


How can I plot the following diagram for a Farey series?



enter image description here










share|improve this question









New contributor




Gustavo Rubiano is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




How can I plot the following diagram for a Farey series?



enter image description here







graphics number-theory






share|improve this question









New contributor




Gustavo Rubiano is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|improve this question









New contributor




Gustavo Rubiano is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|improve this question




share|improve this question








edited 1 hour ago









Michael E2

150k12203482




150k12203482






New contributor




Gustavo Rubiano is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 6 hours ago









Gustavo RubianoGustavo Rubiano

113




113




New contributor




Gustavo Rubiano is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Gustavo Rubiano is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Gustavo Rubiano is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











  • $begingroup$
    From the beautiful book A. Hatcher Topology of numbers
    $endgroup$
    – Gustavo Rubiano
    6 hours ago










  • $begingroup$
    Could you perhaps expand a bit on how the curves are calculated etc?
    $endgroup$
    – MarcoB
    6 hours ago










  • $begingroup$
    pi.math.cornell.edu/~hatcher/TN/TNch1.pdf
    $endgroup$
    – Moo
    4 hours ago
















  • $begingroup$
    From the beautiful book A. Hatcher Topology of numbers
    $endgroup$
    – Gustavo Rubiano
    6 hours ago










  • $begingroup$
    Could you perhaps expand a bit on how the curves are calculated etc?
    $endgroup$
    – MarcoB
    6 hours ago










  • $begingroup$
    pi.math.cornell.edu/~hatcher/TN/TNch1.pdf
    $endgroup$
    – Moo
    4 hours ago















$begingroup$
From the beautiful book A. Hatcher Topology of numbers
$endgroup$
– Gustavo Rubiano
6 hours ago




$begingroup$
From the beautiful book A. Hatcher Topology of numbers
$endgroup$
– Gustavo Rubiano
6 hours ago












$begingroup$
Could you perhaps expand a bit on how the curves are calculated etc?
$endgroup$
– MarcoB
6 hours ago




$begingroup$
Could you perhaps expand a bit on how the curves are calculated etc?
$endgroup$
– MarcoB
6 hours ago












$begingroup$
pi.math.cornell.edu/~hatcher/TN/TNch1.pdf
$endgroup$
– Moo
4 hours ago




$begingroup$
pi.math.cornell.edu/~hatcher/TN/TNch1.pdf
$endgroup$
– Moo
4 hours ago










2 Answers
2






active

oldest

votes


















3












$begingroup$

The curvilinear triangles which are characteristic for this type of plot are called hypocyloid curves. We can use the parametric equations on Wikipedia to plot these, like so:



x[a_, b_, t_] := (b - a) Cos[t] + a Cos[(b - a)/a t]
y[a_, b_, t_] := (b - a) Sin[t] - a Sin[(b - a)/a t]
hypocycloid[n_] := ParametricPlot[
x[1/n, 1, t], y[1/n, 1, t],
t, 0, 2 Pi,
PlotStyle -> Thickness[0.002], Black
]

Show[
Graphics[Circle[0, 0, 1]],
hypocycloid[2],
hypocycloid[4],
hypocycloid[8],
hypocycloid[16],
hypocycloid[32],
hypocycloid[64],
ImageSize -> 500
]


Mathematica graphics



I've previously written about an application of hypocycloids here, and I showed how to visualize epicycloids here.



How to generate the labels is described here (also linked to by moo in a comment). I will simply provide the code.



mediant[a_, b_, c_, d_] := a + c, b + d
recursive[v1_, v2_, depth_] := If[
depth > 2,
mediant[v1, v2],
recursive[v1, mediant[v1, v2], depth + 1],
mediant[v1, v2],
recursive[mediant[v1, v2], v2, depth + 1]
]

computeLabels[v1_, v2_] := Module[numbers,
numbers =
Cases[recursive[v1, v2, 0], _Integer, _Integer, Infinity];
StringTemplate["``/``"] @@@ numbers
]
computeLabelsNegative[v1_, v2_] := Module[numbers,
numbers =
Cases[recursive[v1, v2, 0], _Integer, _Integer, Infinity];
StringTemplate["-`2`/`1`"] @@@ numbers
]

labels = Reverse@Join[
"1/0",
computeLabels[1, 0, 1, 1],
"1/1",
computeLabels[1, 1, 0, 1],
"0/1",
computeLabelsNegative[1, 0, 1, 1],
"-1,1",
computeLabelsNegative[1, 1, 0, 1]
];

coords = CirclePoints[1.1, 186 Degree, 64];

Show[
Graphics[Circle[0, 0, 1]],
hypocycloid[2],
hypocycloid[4],
hypocycloid[8],
hypocycloid[16],
hypocycloid[32],
hypocycloid[64],
Graphics@MapThread[Text, labels, coords],
ImageSize -> 500
]


Mathematica graphics






share|improve this answer











$endgroup$




















    0












    $begingroup$

    I looked up the Farey sequence on Wikipedia, out of curiosity, because I had not heard of it before. The Farey sequence of order $n$ is "the sequence of completely reduced fractions between 0 and 1 which, when in lowest terms, have denominators less than or equal to $n$, arranged in order of increasing size".



    On that basis, you can generate the sequence as follows, for instance:



    ClearAll[farey]
    farey[n_Integer] := (Divide @@@ Subsets[Range[n], 2]) ~ Join ~ 0, 1 //DeleteDuplicates //Sort


    So for instance:



    farey[5]



    0, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1




    I am not sure how these sequences are connected with the figure you showed though.






    share|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "387"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: false,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: null,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );






      Gustavo Rubiano is a new contributor. Be nice, and check out our Code of Conduct.









      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f194838%2fhow-can-i-plot-a-farey-diagram%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      3












      $begingroup$

      The curvilinear triangles which are characteristic for this type of plot are called hypocyloid curves. We can use the parametric equations on Wikipedia to plot these, like so:



      x[a_, b_, t_] := (b - a) Cos[t] + a Cos[(b - a)/a t]
      y[a_, b_, t_] := (b - a) Sin[t] - a Sin[(b - a)/a t]
      hypocycloid[n_] := ParametricPlot[
      x[1/n, 1, t], y[1/n, 1, t],
      t, 0, 2 Pi,
      PlotStyle -> Thickness[0.002], Black
      ]

      Show[
      Graphics[Circle[0, 0, 1]],
      hypocycloid[2],
      hypocycloid[4],
      hypocycloid[8],
      hypocycloid[16],
      hypocycloid[32],
      hypocycloid[64],
      ImageSize -> 500
      ]


      Mathematica graphics



      I've previously written about an application of hypocycloids here, and I showed how to visualize epicycloids here.



      How to generate the labels is described here (also linked to by moo in a comment). I will simply provide the code.



      mediant[a_, b_, c_, d_] := a + c, b + d
      recursive[v1_, v2_, depth_] := If[
      depth > 2,
      mediant[v1, v2],
      recursive[v1, mediant[v1, v2], depth + 1],
      mediant[v1, v2],
      recursive[mediant[v1, v2], v2, depth + 1]
      ]

      computeLabels[v1_, v2_] := Module[numbers,
      numbers =
      Cases[recursive[v1, v2, 0], _Integer, _Integer, Infinity];
      StringTemplate["``/``"] @@@ numbers
      ]
      computeLabelsNegative[v1_, v2_] := Module[numbers,
      numbers =
      Cases[recursive[v1, v2, 0], _Integer, _Integer, Infinity];
      StringTemplate["-`2`/`1`"] @@@ numbers
      ]

      labels = Reverse@Join[
      "1/0",
      computeLabels[1, 0, 1, 1],
      "1/1",
      computeLabels[1, 1, 0, 1],
      "0/1",
      computeLabelsNegative[1, 0, 1, 1],
      "-1,1",
      computeLabelsNegative[1, 1, 0, 1]
      ];

      coords = CirclePoints[1.1, 186 Degree, 64];

      Show[
      Graphics[Circle[0, 0, 1]],
      hypocycloid[2],
      hypocycloid[4],
      hypocycloid[8],
      hypocycloid[16],
      hypocycloid[32],
      hypocycloid[64],
      Graphics@MapThread[Text, labels, coords],
      ImageSize -> 500
      ]


      Mathematica graphics






      share|improve this answer











      $endgroup$

















        3












        $begingroup$

        The curvilinear triangles which are characteristic for this type of plot are called hypocyloid curves. We can use the parametric equations on Wikipedia to plot these, like so:



        x[a_, b_, t_] := (b - a) Cos[t] + a Cos[(b - a)/a t]
        y[a_, b_, t_] := (b - a) Sin[t] - a Sin[(b - a)/a t]
        hypocycloid[n_] := ParametricPlot[
        x[1/n, 1, t], y[1/n, 1, t],
        t, 0, 2 Pi,
        PlotStyle -> Thickness[0.002], Black
        ]

        Show[
        Graphics[Circle[0, 0, 1]],
        hypocycloid[2],
        hypocycloid[4],
        hypocycloid[8],
        hypocycloid[16],
        hypocycloid[32],
        hypocycloid[64],
        ImageSize -> 500
        ]


        Mathematica graphics



        I've previously written about an application of hypocycloids here, and I showed how to visualize epicycloids here.



        How to generate the labels is described here (also linked to by moo in a comment). I will simply provide the code.



        mediant[a_, b_, c_, d_] := a + c, b + d
        recursive[v1_, v2_, depth_] := If[
        depth > 2,
        mediant[v1, v2],
        recursive[v1, mediant[v1, v2], depth + 1],
        mediant[v1, v2],
        recursive[mediant[v1, v2], v2, depth + 1]
        ]

        computeLabels[v1_, v2_] := Module[numbers,
        numbers =
        Cases[recursive[v1, v2, 0], _Integer, _Integer, Infinity];
        StringTemplate["``/``"] @@@ numbers
        ]
        computeLabelsNegative[v1_, v2_] := Module[numbers,
        numbers =
        Cases[recursive[v1, v2, 0], _Integer, _Integer, Infinity];
        StringTemplate["-`2`/`1`"] @@@ numbers
        ]

        labels = Reverse@Join[
        "1/0",
        computeLabels[1, 0, 1, 1],
        "1/1",
        computeLabels[1, 1, 0, 1],
        "0/1",
        computeLabelsNegative[1, 0, 1, 1],
        "-1,1",
        computeLabelsNegative[1, 1, 0, 1]
        ];

        coords = CirclePoints[1.1, 186 Degree, 64];

        Show[
        Graphics[Circle[0, 0, 1]],
        hypocycloid[2],
        hypocycloid[4],
        hypocycloid[8],
        hypocycloid[16],
        hypocycloid[32],
        hypocycloid[64],
        Graphics@MapThread[Text, labels, coords],
        ImageSize -> 500
        ]


        Mathematica graphics






        share|improve this answer











        $endgroup$















          3












          3








          3





          $begingroup$

          The curvilinear triangles which are characteristic for this type of plot are called hypocyloid curves. We can use the parametric equations on Wikipedia to plot these, like so:



          x[a_, b_, t_] := (b - a) Cos[t] + a Cos[(b - a)/a t]
          y[a_, b_, t_] := (b - a) Sin[t] - a Sin[(b - a)/a t]
          hypocycloid[n_] := ParametricPlot[
          x[1/n, 1, t], y[1/n, 1, t],
          t, 0, 2 Pi,
          PlotStyle -> Thickness[0.002], Black
          ]

          Show[
          Graphics[Circle[0, 0, 1]],
          hypocycloid[2],
          hypocycloid[4],
          hypocycloid[8],
          hypocycloid[16],
          hypocycloid[32],
          hypocycloid[64],
          ImageSize -> 500
          ]


          Mathematica graphics



          I've previously written about an application of hypocycloids here, and I showed how to visualize epicycloids here.



          How to generate the labels is described here (also linked to by moo in a comment). I will simply provide the code.



          mediant[a_, b_, c_, d_] := a + c, b + d
          recursive[v1_, v2_, depth_] := If[
          depth > 2,
          mediant[v1, v2],
          recursive[v1, mediant[v1, v2], depth + 1],
          mediant[v1, v2],
          recursive[mediant[v1, v2], v2, depth + 1]
          ]

          computeLabels[v1_, v2_] := Module[numbers,
          numbers =
          Cases[recursive[v1, v2, 0], _Integer, _Integer, Infinity];
          StringTemplate["``/``"] @@@ numbers
          ]
          computeLabelsNegative[v1_, v2_] := Module[numbers,
          numbers =
          Cases[recursive[v1, v2, 0], _Integer, _Integer, Infinity];
          StringTemplate["-`2`/`1`"] @@@ numbers
          ]

          labels = Reverse@Join[
          "1/0",
          computeLabels[1, 0, 1, 1],
          "1/1",
          computeLabels[1, 1, 0, 1],
          "0/1",
          computeLabelsNegative[1, 0, 1, 1],
          "-1,1",
          computeLabelsNegative[1, 1, 0, 1]
          ];

          coords = CirclePoints[1.1, 186 Degree, 64];

          Show[
          Graphics[Circle[0, 0, 1]],
          hypocycloid[2],
          hypocycloid[4],
          hypocycloid[8],
          hypocycloid[16],
          hypocycloid[32],
          hypocycloid[64],
          Graphics@MapThread[Text, labels, coords],
          ImageSize -> 500
          ]


          Mathematica graphics






          share|improve this answer











          $endgroup$



          The curvilinear triangles which are characteristic for this type of plot are called hypocyloid curves. We can use the parametric equations on Wikipedia to plot these, like so:



          x[a_, b_, t_] := (b - a) Cos[t] + a Cos[(b - a)/a t]
          y[a_, b_, t_] := (b - a) Sin[t] - a Sin[(b - a)/a t]
          hypocycloid[n_] := ParametricPlot[
          x[1/n, 1, t], y[1/n, 1, t],
          t, 0, 2 Pi,
          PlotStyle -> Thickness[0.002], Black
          ]

          Show[
          Graphics[Circle[0, 0, 1]],
          hypocycloid[2],
          hypocycloid[4],
          hypocycloid[8],
          hypocycloid[16],
          hypocycloid[32],
          hypocycloid[64],
          ImageSize -> 500
          ]


          Mathematica graphics



          I've previously written about an application of hypocycloids here, and I showed how to visualize epicycloids here.



          How to generate the labels is described here (also linked to by moo in a comment). I will simply provide the code.



          mediant[a_, b_, c_, d_] := a + c, b + d
          recursive[v1_, v2_, depth_] := If[
          depth > 2,
          mediant[v1, v2],
          recursive[v1, mediant[v1, v2], depth + 1],
          mediant[v1, v2],
          recursive[mediant[v1, v2], v2, depth + 1]
          ]

          computeLabels[v1_, v2_] := Module[numbers,
          numbers =
          Cases[recursive[v1, v2, 0], _Integer, _Integer, Infinity];
          StringTemplate["``/``"] @@@ numbers
          ]
          computeLabelsNegative[v1_, v2_] := Module[numbers,
          numbers =
          Cases[recursive[v1, v2, 0], _Integer, _Integer, Infinity];
          StringTemplate["-`2`/`1`"] @@@ numbers
          ]

          labels = Reverse@Join[
          "1/0",
          computeLabels[1, 0, 1, 1],
          "1/1",
          computeLabels[1, 1, 0, 1],
          "0/1",
          computeLabelsNegative[1, 0, 1, 1],
          "-1,1",
          computeLabelsNegative[1, 1, 0, 1]
          ];

          coords = CirclePoints[1.1, 186 Degree, 64];

          Show[
          Graphics[Circle[0, 0, 1]],
          hypocycloid[2],
          hypocycloid[4],
          hypocycloid[8],
          hypocycloid[16],
          hypocycloid[32],
          hypocycloid[64],
          Graphics@MapThread[Text, labels, coords],
          ImageSize -> 500
          ]


          Mathematica graphics







          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited 20 mins ago

























          answered 37 mins ago









          C. E.C. E.

          51.1k3101206




          51.1k3101206





















              0












              $begingroup$

              I looked up the Farey sequence on Wikipedia, out of curiosity, because I had not heard of it before. The Farey sequence of order $n$ is "the sequence of completely reduced fractions between 0 and 1 which, when in lowest terms, have denominators less than or equal to $n$, arranged in order of increasing size".



              On that basis, you can generate the sequence as follows, for instance:



              ClearAll[farey]
              farey[n_Integer] := (Divide @@@ Subsets[Range[n], 2]) ~ Join ~ 0, 1 //DeleteDuplicates //Sort


              So for instance:



              farey[5]



              0, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1




              I am not sure how these sequences are connected with the figure you showed though.






              share|improve this answer









              $endgroup$

















                0












                $begingroup$

                I looked up the Farey sequence on Wikipedia, out of curiosity, because I had not heard of it before. The Farey sequence of order $n$ is "the sequence of completely reduced fractions between 0 and 1 which, when in lowest terms, have denominators less than or equal to $n$, arranged in order of increasing size".



                On that basis, you can generate the sequence as follows, for instance:



                ClearAll[farey]
                farey[n_Integer] := (Divide @@@ Subsets[Range[n], 2]) ~ Join ~ 0, 1 //DeleteDuplicates //Sort


                So for instance:



                farey[5]



                0, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1




                I am not sure how these sequences are connected with the figure you showed though.






                share|improve this answer









                $endgroup$















                  0












                  0








                  0





                  $begingroup$

                  I looked up the Farey sequence on Wikipedia, out of curiosity, because I had not heard of it before. The Farey sequence of order $n$ is "the sequence of completely reduced fractions between 0 and 1 which, when in lowest terms, have denominators less than or equal to $n$, arranged in order of increasing size".



                  On that basis, you can generate the sequence as follows, for instance:



                  ClearAll[farey]
                  farey[n_Integer] := (Divide @@@ Subsets[Range[n], 2]) ~ Join ~ 0, 1 //DeleteDuplicates //Sort


                  So for instance:



                  farey[5]



                  0, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1




                  I am not sure how these sequences are connected with the figure you showed though.






                  share|improve this answer









                  $endgroup$



                  I looked up the Farey sequence on Wikipedia, out of curiosity, because I had not heard of it before. The Farey sequence of order $n$ is "the sequence of completely reduced fractions between 0 and 1 which, when in lowest terms, have denominators less than or equal to $n$, arranged in order of increasing size".



                  On that basis, you can generate the sequence as follows, for instance:



                  ClearAll[farey]
                  farey[n_Integer] := (Divide @@@ Subsets[Range[n], 2]) ~ Join ~ 0, 1 //DeleteDuplicates //Sort


                  So for instance:



                  farey[5]



                  0, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1




                  I am not sure how these sequences are connected with the figure you showed though.







                  share|improve this answer












                  share|improve this answer



                  share|improve this answer










                  answered 6 hours ago









                  MarcoBMarcoB

                  38.6k557115




                  38.6k557115




















                      Gustavo Rubiano is a new contributor. Be nice, and check out our Code of Conduct.









                      draft saved

                      draft discarded


















                      Gustavo Rubiano is a new contributor. Be nice, and check out our Code of Conduct.












                      Gustavo Rubiano is a new contributor. Be nice, and check out our Code of Conduct.











                      Gustavo Rubiano is a new contributor. Be nice, and check out our Code of Conduct.














                      Thanks for contributing an answer to Mathematica Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f194838%2fhow-can-i-plot-a-farey-diagram%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      名間水力發電廠 目录 沿革 設施 鄰近設施 註釋 外部連結 导航菜单23°50′10″N 120°42′41″E / 23.83611°N 120.71139°E / 23.83611; 120.7113923°50′10″N 120°42′41″E / 23.83611°N 120.71139°E / 23.83611; 120.71139計畫概要原始内容臺灣第一座BOT 模式開發的水力發電廠-名間水力電廠名間水力發電廠 水利署首件BOT案原始内容《小檔案》名間電廠 首座BOT水力發電廠原始内容名間電廠BOT - 經濟部水利署中區水資源局

                      Prove that NP is closed under karp reduction?Space(n) not closed under Karp reductions - what about NTime(n)?Class P is closed under rotation?Prove or disprove that $NL$ is closed under polynomial many-one reductions$mathbfNC_2$ is closed under log-space reductionOn Karp reductionwhen can I know if a class (complexity) is closed under reduction (cook/karp)Check if class $PSPACE$ is closed under polyonomially space reductionIs NPSPACE also closed under polynomial-time reduction and under log-space reduction?Prove PSPACE is closed under complement?Prove PSPACE is closed under union?

                      Is my guitar’s action too high? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Strings too stiff on a recently purchased acoustic guitar | Cort AD880CEIs the action of my guitar really high?Μy little finger is too weak to play guitarWith guitar, how long should I give my fingers to strengthen / callous?When playing a fret the guitar sounds mutedPlaying (Barre) chords up the guitar neckI think my guitar strings are wound too tight and I can't play barre chordsF barre chord on an SG guitarHow to find to the right strings of a barre chord by feel?High action on higher fret on my steel acoustic guitar