How many letters suffice to construct words with no repetition?Bits and orbitsExtension of Tao-Green TheoremA property of unimodal sequencesPartitioning finite ordered setsRepresentability of sets of infinite sequences sharing common prefixes and factors (i.e. infixes)“Nyldon words”: understanding a class of words factorizing the free monoid increasinglyProbability of no $k$ 1's in arithmetic progression in binary sequence of length $n$Reference for one-sided subshiftsSequences with 3 LettersMinimum number of operations necessary to arrive at any configuration
How many letters suffice to construct words with no repetition?
Bits and orbitsExtension of Tao-Green TheoremA property of unimodal sequencesPartitioning finite ordered setsRepresentability of sets of infinite sequences sharing common prefixes and factors (i.e. infixes)“Nyldon words”: understanding a class of words factorizing the free monoid increasinglyProbability of no $k$ 1's in arithmetic progression in binary sequence of length $n$Reference for one-sided subshiftsSequences with 3 LettersMinimum number of operations necessary to arrive at any configuration
$begingroup$
Given a finite set $A=a_1,ldots , a_k$, consider the sequences of any length that can be constructed using the elements of $A$ and which contain no repetition, a repetition being a pair of consecutive subsequences (of any length) that are equal. Is it true that $k = 4$ is the minimum number of elements in $A$ that allows the construction of sequences of any length containing no repetition? Can anyone indicate a reference for this result, if true?
co.combinatorics symbolic-dynamics
New contributor
$endgroup$
add a comment |
$begingroup$
Given a finite set $A=a_1,ldots , a_k$, consider the sequences of any length that can be constructed using the elements of $A$ and which contain no repetition, a repetition being a pair of consecutive subsequences (of any length) that are equal. Is it true that $k = 4$ is the minimum number of elements in $A$ that allows the construction of sequences of any length containing no repetition? Can anyone indicate a reference for this result, if true?
co.combinatorics symbolic-dynamics
New contributor
$endgroup$
add a comment |
$begingroup$
Given a finite set $A=a_1,ldots , a_k$, consider the sequences of any length that can be constructed using the elements of $A$ and which contain no repetition, a repetition being a pair of consecutive subsequences (of any length) that are equal. Is it true that $k = 4$ is the minimum number of elements in $A$ that allows the construction of sequences of any length containing no repetition? Can anyone indicate a reference for this result, if true?
co.combinatorics symbolic-dynamics
New contributor
$endgroup$
Given a finite set $A=a_1,ldots , a_k$, consider the sequences of any length that can be constructed using the elements of $A$ and which contain no repetition, a repetition being a pair of consecutive subsequences (of any length) that are equal. Is it true that $k = 4$ is the minimum number of elements in $A$ that allows the construction of sequences of any length containing no repetition? Can anyone indicate a reference for this result, if true?
co.combinatorics symbolic-dynamics
co.combinatorics symbolic-dynamics
New contributor
New contributor
edited 1 hour ago
YCor
29k486140
29k486140
New contributor
asked 3 hours ago
PiCoPiCo
262
262
New contributor
New contributor
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Wikipedia has some examples of square-free words over alphabets with 3 letters.
https://en.wikipedia.org/wiki/Square-free_word
One example of an infinite square-free word over an alphabet of size 3 is the word over the alphabet 0,±1 obtained by taking the first difference of the Thue–Morse sequence.[6][7] That is, from the Thue–Morse sequence
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, ...
one forms a new sequence in which each term is the difference of two consecutive terms of the Thue–Morse sequence. The resulting square-free word is
1, 0, −1, 1, −1, 0, 1, 0, −1, 0, 1, −1, 1, 0, −1, ... (sequence A029883 in the OEIS).
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "504"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
PiCo is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f327504%2fhow-many-letters-suffice-to-construct-words-with-no-repetition%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Wikipedia has some examples of square-free words over alphabets with 3 letters.
https://en.wikipedia.org/wiki/Square-free_word
One example of an infinite square-free word over an alphabet of size 3 is the word over the alphabet 0,±1 obtained by taking the first difference of the Thue–Morse sequence.[6][7] That is, from the Thue–Morse sequence
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, ...
one forms a new sequence in which each term is the difference of two consecutive terms of the Thue–Morse sequence. The resulting square-free word is
1, 0, −1, 1, −1, 0, 1, 0, −1, 0, 1, −1, 1, 0, −1, ... (sequence A029883 in the OEIS).
$endgroup$
add a comment |
$begingroup$
Wikipedia has some examples of square-free words over alphabets with 3 letters.
https://en.wikipedia.org/wiki/Square-free_word
One example of an infinite square-free word over an alphabet of size 3 is the word over the alphabet 0,±1 obtained by taking the first difference of the Thue–Morse sequence.[6][7] That is, from the Thue–Morse sequence
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, ...
one forms a new sequence in which each term is the difference of two consecutive terms of the Thue–Morse sequence. The resulting square-free word is
1, 0, −1, 1, −1, 0, 1, 0, −1, 0, 1, −1, 1, 0, −1, ... (sequence A029883 in the OEIS).
$endgroup$
add a comment |
$begingroup$
Wikipedia has some examples of square-free words over alphabets with 3 letters.
https://en.wikipedia.org/wiki/Square-free_word
One example of an infinite square-free word over an alphabet of size 3 is the word over the alphabet 0,±1 obtained by taking the first difference of the Thue–Morse sequence.[6][7] That is, from the Thue–Morse sequence
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, ...
one forms a new sequence in which each term is the difference of two consecutive terms of the Thue–Morse sequence. The resulting square-free word is
1, 0, −1, 1, −1, 0, 1, 0, −1, 0, 1, −1, 1, 0, −1, ... (sequence A029883 in the OEIS).
$endgroup$
Wikipedia has some examples of square-free words over alphabets with 3 letters.
https://en.wikipedia.org/wiki/Square-free_word
One example of an infinite square-free word over an alphabet of size 3 is the word over the alphabet 0,±1 obtained by taking the first difference of the Thue–Morse sequence.[6][7] That is, from the Thue–Morse sequence
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, ...
one forms a new sequence in which each term is the difference of two consecutive terms of the Thue–Morse sequence. The resulting square-free word is
1, 0, −1, 1, −1, 0, 1, 0, −1, 0, 1, −1, 1, 0, −1, ... (sequence A029883 in the OEIS).
answered 3 hours ago
user44191user44191
3,13511633
3,13511633
add a comment |
add a comment |
PiCo is a new contributor. Be nice, and check out our Code of Conduct.
PiCo is a new contributor. Be nice, and check out our Code of Conduct.
PiCo is a new contributor. Be nice, and check out our Code of Conduct.
PiCo is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to MathOverflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f327504%2fhow-many-letters-suffice-to-construct-words-with-no-repetition%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown