How many letters suffice to construct words with no repetition?Bits and orbitsExtension of Tao-Green TheoremA property of unimodal sequencesPartitioning finite ordered setsRepresentability of sets of infinite sequences sharing common prefixes and factors (i.e. infixes)“Nyldon words”: understanding a class of words factorizing the free monoid increasinglyProbability of no $k$ 1's in arithmetic progression in binary sequence of length $n$Reference for one-sided subshiftsSequences with 3 LettersMinimum number of operations necessary to arrive at any configuration

How many letters suffice to construct words with no repetition?


Bits and orbitsExtension of Tao-Green TheoremA property of unimodal sequencesPartitioning finite ordered setsRepresentability of sets of infinite sequences sharing common prefixes and factors (i.e. infixes)“Nyldon words”: understanding a class of words factorizing the free monoid increasinglyProbability of no $k$ 1's in arithmetic progression in binary sequence of length $n$Reference for one-sided subshiftsSequences with 3 LettersMinimum number of operations necessary to arrive at any configuration













5












$begingroup$


Given a finite set $A=a_1,ldots , a_k$, consider the sequences of any length that can be constructed using the elements of $A$ and which contain no repetition, a repetition being a pair of consecutive subsequences (of any length) that are equal. Is it true that $k = 4$ is the minimum number of elements in $A$ that allows the construction of sequences of any length containing no repetition? Can anyone indicate a reference for this result, if true?










share|cite|improve this question









New contributor




PiCo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$
















    5












    $begingroup$


    Given a finite set $A=a_1,ldots , a_k$, consider the sequences of any length that can be constructed using the elements of $A$ and which contain no repetition, a repetition being a pair of consecutive subsequences (of any length) that are equal. Is it true that $k = 4$ is the minimum number of elements in $A$ that allows the construction of sequences of any length containing no repetition? Can anyone indicate a reference for this result, if true?










    share|cite|improve this question









    New contributor




    PiCo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$














      5












      5








      5


      2



      $begingroup$


      Given a finite set $A=a_1,ldots , a_k$, consider the sequences of any length that can be constructed using the elements of $A$ and which contain no repetition, a repetition being a pair of consecutive subsequences (of any length) that are equal. Is it true that $k = 4$ is the minimum number of elements in $A$ that allows the construction of sequences of any length containing no repetition? Can anyone indicate a reference for this result, if true?










      share|cite|improve this question









      New contributor




      PiCo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      Given a finite set $A=a_1,ldots , a_k$, consider the sequences of any length that can be constructed using the elements of $A$ and which contain no repetition, a repetition being a pair of consecutive subsequences (of any length) that are equal. Is it true that $k = 4$ is the minimum number of elements in $A$ that allows the construction of sequences of any length containing no repetition? Can anyone indicate a reference for this result, if true?







      co.combinatorics symbolic-dynamics






      share|cite|improve this question









      New contributor




      PiCo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|cite|improve this question









      New contributor




      PiCo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|cite|improve this question




      share|cite|improve this question








      edited 1 hour ago









      YCor

      29k486140




      29k486140






      New contributor




      PiCo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 3 hours ago









      PiCoPiCo

      262




      262




      New contributor




      PiCo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      PiCo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      PiCo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.




















          1 Answer
          1






          active

          oldest

          votes


















          7












          $begingroup$

          Wikipedia has some examples of square-free words over alphabets with 3 letters.
          https://en.wikipedia.org/wiki/Square-free_word




          One example of an infinite square-free word over an alphabet of size 3 is the word over the alphabet 0,±1 obtained by taking the first difference of the Thue–Morse sequence.[6][7] That is, from the Thue–Morse sequence



          0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, ...



          one forms a new sequence in which each term is the difference of two consecutive terms of the Thue–Morse sequence. The resulting square-free word is



          1, 0, −1, 1, −1, 0, 1, 0, −1, 0, 1, −1, 1, 0, −1, ... (sequence A029883 in the OEIS).







          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "504"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );






            PiCo is a new contributor. Be nice, and check out our Code of Conduct.









            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f327504%2fhow-many-letters-suffice-to-construct-words-with-no-repetition%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            7












            $begingroup$

            Wikipedia has some examples of square-free words over alphabets with 3 letters.
            https://en.wikipedia.org/wiki/Square-free_word




            One example of an infinite square-free word over an alphabet of size 3 is the word over the alphabet 0,±1 obtained by taking the first difference of the Thue–Morse sequence.[6][7] That is, from the Thue–Morse sequence



            0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, ...



            one forms a new sequence in which each term is the difference of two consecutive terms of the Thue–Morse sequence. The resulting square-free word is



            1, 0, −1, 1, −1, 0, 1, 0, −1, 0, 1, −1, 1, 0, −1, ... (sequence A029883 in the OEIS).







            share|cite|improve this answer









            $endgroup$

















              7












              $begingroup$

              Wikipedia has some examples of square-free words over alphabets with 3 letters.
              https://en.wikipedia.org/wiki/Square-free_word




              One example of an infinite square-free word over an alphabet of size 3 is the word over the alphabet 0,±1 obtained by taking the first difference of the Thue–Morse sequence.[6][7] That is, from the Thue–Morse sequence



              0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, ...



              one forms a new sequence in which each term is the difference of two consecutive terms of the Thue–Morse sequence. The resulting square-free word is



              1, 0, −1, 1, −1, 0, 1, 0, −1, 0, 1, −1, 1, 0, −1, ... (sequence A029883 in the OEIS).







              share|cite|improve this answer









              $endgroup$















                7












                7








                7





                $begingroup$

                Wikipedia has some examples of square-free words over alphabets with 3 letters.
                https://en.wikipedia.org/wiki/Square-free_word




                One example of an infinite square-free word over an alphabet of size 3 is the word over the alphabet 0,±1 obtained by taking the first difference of the Thue–Morse sequence.[6][7] That is, from the Thue–Morse sequence



                0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, ...



                one forms a new sequence in which each term is the difference of two consecutive terms of the Thue–Morse sequence. The resulting square-free word is



                1, 0, −1, 1, −1, 0, 1, 0, −1, 0, 1, −1, 1, 0, −1, ... (sequence A029883 in the OEIS).







                share|cite|improve this answer









                $endgroup$



                Wikipedia has some examples of square-free words over alphabets with 3 letters.
                https://en.wikipedia.org/wiki/Square-free_word




                One example of an infinite square-free word over an alphabet of size 3 is the word over the alphabet 0,±1 obtained by taking the first difference of the Thue–Morse sequence.[6][7] That is, from the Thue–Morse sequence



                0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, ...



                one forms a new sequence in which each term is the difference of two consecutive terms of the Thue–Morse sequence. The resulting square-free word is



                1, 0, −1, 1, −1, 0, 1, 0, −1, 0, 1, −1, 1, 0, −1, ... (sequence A029883 in the OEIS).








                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 3 hours ago









                user44191user44191

                3,13511633




                3,13511633




















                    PiCo is a new contributor. Be nice, and check out our Code of Conduct.









                    draft saved

                    draft discarded


















                    PiCo is a new contributor. Be nice, and check out our Code of Conduct.












                    PiCo is a new contributor. Be nice, and check out our Code of Conduct.











                    PiCo is a new contributor. Be nice, and check out our Code of Conduct.














                    Thanks for contributing an answer to MathOverflow!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f327504%2fhow-many-letters-suffice-to-construct-words-with-no-repetition%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    名間水力發電廠 目录 沿革 設施 鄰近設施 註釋 外部連結 导航菜单23°50′10″N 120°42′41″E / 23.83611°N 120.71139°E / 23.83611; 120.7113923°50′10″N 120°42′41″E / 23.83611°N 120.71139°E / 23.83611; 120.71139計畫概要原始内容臺灣第一座BOT 模式開發的水力發電廠-名間水力電廠名間水力發電廠 水利署首件BOT案原始内容《小檔案》名間電廠 首座BOT水力發電廠原始内容名間電廠BOT - 經濟部水利署中區水資源局

                    Prove that NP is closed under karp reduction?Space(n) not closed under Karp reductions - what about NTime(n)?Class P is closed under rotation?Prove or disprove that $NL$ is closed under polynomial many-one reductions$mathbfNC_2$ is closed under log-space reductionOn Karp reductionwhen can I know if a class (complexity) is closed under reduction (cook/karp)Check if class $PSPACE$ is closed under polyonomially space reductionIs NPSPACE also closed under polynomial-time reduction and under log-space reduction?Prove PSPACE is closed under complement?Prove PSPACE is closed under union?

                    Is my guitar’s action too high? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Strings too stiff on a recently purchased acoustic guitar | Cort AD880CEIs the action of my guitar really high?Μy little finger is too weak to play guitarWith guitar, how long should I give my fingers to strengthen / callous?When playing a fret the guitar sounds mutedPlaying (Barre) chords up the guitar neckI think my guitar strings are wound too tight and I can't play barre chordsF barre chord on an SG guitarHow to find to the right strings of a barre chord by feel?High action on higher fret on my steel acoustic guitar