What does it exactly mean if a random variable follows a distributionWhat is meant by a “random variable”?What is meant by using a probability distribution to model the output data for a regression problem?What does truncated distribution mean?What does “chi” mean and come from in “chi-squared distribution”?What exactly is a distribution?If $X$ and $Y$ are normally distributed random variables, what kind of distribution their sum follows?“Let random variables $X_1,dots, X_n$ be a iid random sample from $f(x)$” - what does it mean?What does it mean to have a probability as random variable?What does it mean by error has a Gaussian Distribution?what exactly does it mean when we say “Let $X_1, X_2 …$ be iid random variables”Mean and S.D of Normal distributionWhat does it mean to generate a random variable from a distribution when random variable is a function?

Where else does the Shulchan Aruch quote an authority by name?

How is it possible for user's password to be changed after storage was encrypted? (on OS X, Android)

COUNT(*) or MAX(id) - which is faster?

How did the USSR manage to innovate in an environment characterized by government censorship and high bureaucracy?

Is ipsum/ipsa/ipse a third person pronoun, or can it serve other functions?

Is every set a filtered colimit of finite sets?

What does it exactly mean if a random variable follows a distribution

How can I fix this gap between bookcases I made?

Doomsday-clock for my fantasy planet

Extreme, but not acceptable situation and I can't start the work tomorrow morning

What's the difference between repeating elections every few years and repeating a referendum after a few years?

Is it legal to have the "// (c) 2019 John Smith" header in all files when there are hundreds of contributors?

How would photo IDs work for shapeshifters?

How to answer pointed "are you quitting" questioning when I don't want them to suspect

Why do UK politicians seemingly ignore opinion polls on Brexit?

What is the offset in a seaplane's hull?

"My colleague's body is amazing"

Prime joint compound before latex paint?

Email Account under attack (really) - anything I can do?

Are white and non-white police officers equally likely to kill black suspects?

Why did the Germans forbid the possession of pet pigeons in Rostov-on-Don in 1941?

What is GPS' 19 year rollover and does it present a cybersecurity issue?

Can the Produce Flame cantrip be used to grapple, or as an unarmed strike, in the right circumstances?

Crop image to path created in TikZ?



What does it exactly mean if a random variable follows a distribution


What is meant by a “random variable”?What is meant by using a probability distribution to model the output data for a regression problem?What does truncated distribution mean?What does “chi” mean and come from in “chi-squared distribution”?What exactly is a distribution?If $X$ and $Y$ are normally distributed random variables, what kind of distribution their sum follows?“Let random variables $X_1,dots, X_n$ be a iid random sample from $f(x)$” - what does it mean?What does it mean to have a probability as random variable?What does it mean by error has a Gaussian Distribution?what exactly does it mean when we say “Let $X_1, X_2 …$ be iid random variables”Mean and S.D of Normal distributionWhat does it mean to generate a random variable from a distribution when random variable is a function?






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








1












$begingroup$


Imagine there's a random variable such as $ε$. Then we say that $ε$ is i.i.d and follows a normal distribution with mean $0$ and variance $σ^2$.



What does this mean? Is this not a variable anymore? Is this a function now? I see this in most books and such but I'm still unclear what exactly it means or what it does and etc.



In terms of regression, I know this variable is basically the random errors, but what does it mean if this vector of random errors follows a normal distribution?










share|cite|improve this question







New contributor




Hello Mellow is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 1




    $begingroup$
    Does this help stats.stackexchange.com/a/54894/35989? Or maybe this stats.stackexchange.com/questions/194558/… ?
    $endgroup$
    – Tim
    4 hours ago

















1












$begingroup$


Imagine there's a random variable such as $ε$. Then we say that $ε$ is i.i.d and follows a normal distribution with mean $0$ and variance $σ^2$.



What does this mean? Is this not a variable anymore? Is this a function now? I see this in most books and such but I'm still unclear what exactly it means or what it does and etc.



In terms of regression, I know this variable is basically the random errors, but what does it mean if this vector of random errors follows a normal distribution?










share|cite|improve this question







New contributor




Hello Mellow is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 1




    $begingroup$
    Does this help stats.stackexchange.com/a/54894/35989? Or maybe this stats.stackexchange.com/questions/194558/… ?
    $endgroup$
    – Tim
    4 hours ago













1












1








1





$begingroup$


Imagine there's a random variable such as $ε$. Then we say that $ε$ is i.i.d and follows a normal distribution with mean $0$ and variance $σ^2$.



What does this mean? Is this not a variable anymore? Is this a function now? I see this in most books and such but I'm still unclear what exactly it means or what it does and etc.



In terms of regression, I know this variable is basically the random errors, but what does it mean if this vector of random errors follows a normal distribution?










share|cite|improve this question







New contributor




Hello Mellow is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




Imagine there's a random variable such as $ε$. Then we say that $ε$ is i.i.d and follows a normal distribution with mean $0$ and variance $σ^2$.



What does this mean? Is this not a variable anymore? Is this a function now? I see this in most books and such but I'm still unclear what exactly it means or what it does and etc.



In terms of regression, I know this variable is basically the random errors, but what does it mean if this vector of random errors follows a normal distribution?







regression distributions normal-distribution random-variable






share|cite|improve this question







New contributor




Hello Mellow is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question







New contributor




Hello Mellow is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question






New contributor




Hello Mellow is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 4 hours ago









Hello MellowHello Mellow

61




61




New contributor




Hello Mellow is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Hello Mellow is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Hello Mellow is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







  • 1




    $begingroup$
    Does this help stats.stackexchange.com/a/54894/35989? Or maybe this stats.stackexchange.com/questions/194558/… ?
    $endgroup$
    – Tim
    4 hours ago












  • 1




    $begingroup$
    Does this help stats.stackexchange.com/a/54894/35989? Or maybe this stats.stackexchange.com/questions/194558/… ?
    $endgroup$
    – Tim
    4 hours ago







1




1




$begingroup$
Does this help stats.stackexchange.com/a/54894/35989? Or maybe this stats.stackexchange.com/questions/194558/… ?
$endgroup$
– Tim
4 hours ago




$begingroup$
Does this help stats.stackexchange.com/a/54894/35989? Or maybe this stats.stackexchange.com/questions/194558/… ?
$endgroup$
– Tim
4 hours ago










2 Answers
2






active

oldest

votes


















2












$begingroup$

I.I.D. means independent and identically distributed, so $epsilon$ is a vector of component random variables with the same distribution.



The meaning of "A follows an X distribution" is equivalent to saying that it "has a distribution," which is to say that it is a random quantity that can be determined only in probability.



In the example of regression that you refer to, $Y=f(X) + epsilon; epsilon stackreli.i.d.sim N(0,sigma^2)$, so the response variable $Y$ is equal to some function of the independent $X$ on average, and errors are normally distributed with mean zero, i.e. the observed $Y$ is not exactly $f(X)$.






share|cite|improve this answer









$endgroup$




















    2












    $begingroup$

    A random variable $varepsilon sim mathrmN(0,sigma^2)$ is not really a variable, but actually represents the outcome of a random experiment. (Mathematically rigorously, but not so important, one would say: it is a function mapping from a sample space into the space in which the random variable lives.)



    How can this be understood? A probability measure, like $mathrmN(0,sigma^2)$ assigns values to sets, so-called events. In this case, the probability of $varepsilon$ ending up in a set $A$ has probability
    $$
    mathrmN(0,sigma^2)(A) = int_A frac1sqrt2pisigma^2expleft(-frac12sigma^2 |x |^2 right) mathrmdx.
    $$

    That means, if you repeatedly saw i.i.d. (independent and identically distributed) $varepsilon$'s, they would (in the large data limit) on average end up in $A$, precisely $mathrmN(0,sigma^2)(A)cdot 100 %$ of the time.






    share|cite|improve this answer









    $endgroup$












    • $begingroup$
      How is it not a random variable? It has a distribution, so it is a random variable.
      $endgroup$
      – Tim
      4 hours ago











    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "65"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );






    Hello Mellow is a new contributor. Be nice, and check out our Code of Conduct.









    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f401904%2fwhat-does-it-exactly-mean-if-a-random-variable-follows-a-distribution%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    I.I.D. means independent and identically distributed, so $epsilon$ is a vector of component random variables with the same distribution.



    The meaning of "A follows an X distribution" is equivalent to saying that it "has a distribution," which is to say that it is a random quantity that can be determined only in probability.



    In the example of regression that you refer to, $Y=f(X) + epsilon; epsilon stackreli.i.d.sim N(0,sigma^2)$, so the response variable $Y$ is equal to some function of the independent $X$ on average, and errors are normally distributed with mean zero, i.e. the observed $Y$ is not exactly $f(X)$.






    share|cite|improve this answer









    $endgroup$

















      2












      $begingroup$

      I.I.D. means independent and identically distributed, so $epsilon$ is a vector of component random variables with the same distribution.



      The meaning of "A follows an X distribution" is equivalent to saying that it "has a distribution," which is to say that it is a random quantity that can be determined only in probability.



      In the example of regression that you refer to, $Y=f(X) + epsilon; epsilon stackreli.i.d.sim N(0,sigma^2)$, so the response variable $Y$ is equal to some function of the independent $X$ on average, and errors are normally distributed with mean zero, i.e. the observed $Y$ is not exactly $f(X)$.






      share|cite|improve this answer









      $endgroup$















        2












        2








        2





        $begingroup$

        I.I.D. means independent and identically distributed, so $epsilon$ is a vector of component random variables with the same distribution.



        The meaning of "A follows an X distribution" is equivalent to saying that it "has a distribution," which is to say that it is a random quantity that can be determined only in probability.



        In the example of regression that you refer to, $Y=f(X) + epsilon; epsilon stackreli.i.d.sim N(0,sigma^2)$, so the response variable $Y$ is equal to some function of the independent $X$ on average, and errors are normally distributed with mean zero, i.e. the observed $Y$ is not exactly $f(X)$.






        share|cite|improve this answer









        $endgroup$



        I.I.D. means independent and identically distributed, so $epsilon$ is a vector of component random variables with the same distribution.



        The meaning of "A follows an X distribution" is equivalent to saying that it "has a distribution," which is to say that it is a random quantity that can be determined only in probability.



        In the example of regression that you refer to, $Y=f(X) + epsilon; epsilon stackreli.i.d.sim N(0,sigma^2)$, so the response variable $Y$ is equal to some function of the independent $X$ on average, and errors are normally distributed with mean zero, i.e. the observed $Y$ is not exactly $f(X)$.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 4 hours ago









        HStamperHStamper

        1,114612




        1,114612























            2












            $begingroup$

            A random variable $varepsilon sim mathrmN(0,sigma^2)$ is not really a variable, but actually represents the outcome of a random experiment. (Mathematically rigorously, but not so important, one would say: it is a function mapping from a sample space into the space in which the random variable lives.)



            How can this be understood? A probability measure, like $mathrmN(0,sigma^2)$ assigns values to sets, so-called events. In this case, the probability of $varepsilon$ ending up in a set $A$ has probability
            $$
            mathrmN(0,sigma^2)(A) = int_A frac1sqrt2pisigma^2expleft(-frac12sigma^2 |x |^2 right) mathrmdx.
            $$

            That means, if you repeatedly saw i.i.d. (independent and identically distributed) $varepsilon$'s, they would (in the large data limit) on average end up in $A$, precisely $mathrmN(0,sigma^2)(A)cdot 100 %$ of the time.






            share|cite|improve this answer









            $endgroup$












            • $begingroup$
              How is it not a random variable? It has a distribution, so it is a random variable.
              $endgroup$
              – Tim
              4 hours ago















            2












            $begingroup$

            A random variable $varepsilon sim mathrmN(0,sigma^2)$ is not really a variable, but actually represents the outcome of a random experiment. (Mathematically rigorously, but not so important, one would say: it is a function mapping from a sample space into the space in which the random variable lives.)



            How can this be understood? A probability measure, like $mathrmN(0,sigma^2)$ assigns values to sets, so-called events. In this case, the probability of $varepsilon$ ending up in a set $A$ has probability
            $$
            mathrmN(0,sigma^2)(A) = int_A frac1sqrt2pisigma^2expleft(-frac12sigma^2 |x |^2 right) mathrmdx.
            $$

            That means, if you repeatedly saw i.i.d. (independent and identically distributed) $varepsilon$'s, they would (in the large data limit) on average end up in $A$, precisely $mathrmN(0,sigma^2)(A)cdot 100 %$ of the time.






            share|cite|improve this answer









            $endgroup$












            • $begingroup$
              How is it not a random variable? It has a distribution, so it is a random variable.
              $endgroup$
              – Tim
              4 hours ago













            2












            2








            2





            $begingroup$

            A random variable $varepsilon sim mathrmN(0,sigma^2)$ is not really a variable, but actually represents the outcome of a random experiment. (Mathematically rigorously, but not so important, one would say: it is a function mapping from a sample space into the space in which the random variable lives.)



            How can this be understood? A probability measure, like $mathrmN(0,sigma^2)$ assigns values to sets, so-called events. In this case, the probability of $varepsilon$ ending up in a set $A$ has probability
            $$
            mathrmN(0,sigma^2)(A) = int_A frac1sqrt2pisigma^2expleft(-frac12sigma^2 |x |^2 right) mathrmdx.
            $$

            That means, if you repeatedly saw i.i.d. (independent and identically distributed) $varepsilon$'s, they would (in the large data limit) on average end up in $A$, precisely $mathrmN(0,sigma^2)(A)cdot 100 %$ of the time.






            share|cite|improve this answer









            $endgroup$



            A random variable $varepsilon sim mathrmN(0,sigma^2)$ is not really a variable, but actually represents the outcome of a random experiment. (Mathematically rigorously, but not so important, one would say: it is a function mapping from a sample space into the space in which the random variable lives.)



            How can this be understood? A probability measure, like $mathrmN(0,sigma^2)$ assigns values to sets, so-called events. In this case, the probability of $varepsilon$ ending up in a set $A$ has probability
            $$
            mathrmN(0,sigma^2)(A) = int_A frac1sqrt2pisigma^2expleft(-frac12sigma^2 |x |^2 right) mathrmdx.
            $$

            That means, if you repeatedly saw i.i.d. (independent and identically distributed) $varepsilon$'s, they would (in the large data limit) on average end up in $A$, precisely $mathrmN(0,sigma^2)(A)cdot 100 %$ of the time.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered 4 hours ago









            JonasJonas

            51211




            51211











            • $begingroup$
              How is it not a random variable? It has a distribution, so it is a random variable.
              $endgroup$
              – Tim
              4 hours ago
















            • $begingroup$
              How is it not a random variable? It has a distribution, so it is a random variable.
              $endgroup$
              – Tim
              4 hours ago















            $begingroup$
            How is it not a random variable? It has a distribution, so it is a random variable.
            $endgroup$
            – Tim
            4 hours ago




            $begingroup$
            How is it not a random variable? It has a distribution, so it is a random variable.
            $endgroup$
            – Tim
            4 hours ago










            Hello Mellow is a new contributor. Be nice, and check out our Code of Conduct.









            draft saved

            draft discarded


















            Hello Mellow is a new contributor. Be nice, and check out our Code of Conduct.












            Hello Mellow is a new contributor. Be nice, and check out our Code of Conduct.











            Hello Mellow is a new contributor. Be nice, and check out our Code of Conduct.














            Thanks for contributing an answer to Cross Validated!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f401904%2fwhat-does-it-exactly-mean-if-a-random-variable-follows-a-distribution%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            名間水力發電廠 目录 沿革 設施 鄰近設施 註釋 外部連結 导航菜单23°50′10″N 120°42′41″E / 23.83611°N 120.71139°E / 23.83611; 120.7113923°50′10″N 120°42′41″E / 23.83611°N 120.71139°E / 23.83611; 120.71139計畫概要原始内容臺灣第一座BOT 模式開發的水力發電廠-名間水力電廠名間水力發電廠 水利署首件BOT案原始内容《小檔案》名間電廠 首座BOT水力發電廠原始内容名間電廠BOT - 經濟部水利署中區水資源局

            Prove that NP is closed under karp reduction?Space(n) not closed under Karp reductions - what about NTime(n)?Class P is closed under rotation?Prove or disprove that $NL$ is closed under polynomial many-one reductions$mathbfNC_2$ is closed under log-space reductionOn Karp reductionwhen can I know if a class (complexity) is closed under reduction (cook/karp)Check if class $PSPACE$ is closed under polyonomially space reductionIs NPSPACE also closed under polynomial-time reduction and under log-space reduction?Prove PSPACE is closed under complement?Prove PSPACE is closed under union?

            Is my guitar’s action too high? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Strings too stiff on a recently purchased acoustic guitar | Cort AD880CEIs the action of my guitar really high?Μy little finger is too weak to play guitarWith guitar, how long should I give my fingers to strengthen / callous?When playing a fret the guitar sounds mutedPlaying (Barre) chords up the guitar neckI think my guitar strings are wound too tight and I can't play barre chordsF barre chord on an SG guitarHow to find to the right strings of a barre chord by feel?High action on higher fret on my steel acoustic guitar