LDA and an aldehyde Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Selectivity in aldol condensation between pivaldehyde and acetoneWhy can you not make a compound with a quaternary alpha carbon using malonic ester?How to explain the different regioselectivity of ketones/imines reacting with LDA?nucleophilic attack in Acid chloride formationWhy is Fmoc base-labile and Moz acid-labile?Can a base like OH- attack aldehyde and ketone to create hydrate instead of enol?Can aldol reaction occur during α-halogenation of ketone?Synthesis of methylenecyclohexane from cyclohexylmethanolReduction of Carbonyl Compounds with LiAlH4Salt used in Perkin Reaction
Why are there no cargo aircraft with "flying wing" design?
How to draw a nice diagonal matrix?
Why do people hide their license plates in the EU?
Apollo command module space walk?
If a contract sometimes uses the wrong name, is it still valid?
Why are the trig functions versine, haversine, exsecant, etc, seldom utilized in present society?
T-test, ANOVA or Regression, what's the difference?
Use second argument for optional first argument if not provided in macro
What do you call the main part of a joke?
Why aren't air breathing engines used as small first stages
Muzzle or not? HOw would you name this thing?
In predicate logic, does existential quantification (∃) include universal quantification (∀), i.e. can 'some' imply 'all'?
For a new assistant professor in CS, how to build/manage a publication pipeline
What would be the ideal power source for a cybernetic eye?
Why wasn't DOSKEY integrated with command.com?
Why are both D and D# fitting into my E minor key?
Finding the upper and lower bound using binary search
When precisely will security support for Ubuntu GNOME 16.04 LTS end?
Why do we bend a book to keep it straight?
2001: A Space Odyssey's use of the song "Daisy Bell" (Bicycle Built for Two); life imitates art or vice-versa?
LDA and an aldehyde
Installing Debian packages from Stretch DVD 2 and 3 after installation using apt?
Compare a given version number in the form major.minor.build.patch and see if one is less than the other
What causes the direction of lightning flashes?
LDA and an aldehyde
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Selectivity in aldol condensation between pivaldehyde and acetoneWhy can you not make a compound with a quaternary alpha carbon using malonic ester?How to explain the different regioselectivity of ketones/imines reacting with LDA?nucleophilic attack in Acid chloride formationWhy is Fmoc base-labile and Moz acid-labile?Can a base like OH- attack aldehyde and ketone to create hydrate instead of enol?Can aldol reaction occur during α-halogenation of ketone?Synthesis of methylenecyclohexane from cyclohexylmethanolReduction of Carbonyl Compounds with LiAlH4Salt used in Perkin Reaction
$begingroup$
Compounds A and B both react with LDA (lithium diisopropylamide, a strong base) to form the same anion C with the formula $ceC4H5O^-Li^+$.
I am unfamiliar with LDA. My first thought was that the base would attack the H of the carbonyl C, I presumed that this H would have the lowest $mathrmpK_mathrma$ because it is an $mathrmsp^2$ C and the C is slightly positive from the carbonyl.
However, the structures this gave were confusing and didn't give the same product for both A and B. I tried to google LDA which showed that it was a big bulky base so it can't attack hindered H, but this shouldn't be a problem as the carbonyl C H isn't hindered. However, I found one mechanism for a different aldehyde that had the H taken from the $mathrmsp^3$ C next to the carbonyl.
Where would LDA preferentially attack an aldehyde and why?
Additional note: I have now played around with the structures to find that the only way LDA could react with A and B to form the same anion C if it in both cases it removes and $ceH+$ from the $mathrmsp^3$ carbon in the structure, these seems counter-intuitive! But perhaps LDA only attacks $mathrmsp^3$ C-H for some reason?
organic-chemistry reaction-mechanism
$endgroup$
add a comment |
$begingroup$
Compounds A and B both react with LDA (lithium diisopropylamide, a strong base) to form the same anion C with the formula $ceC4H5O^-Li^+$.
I am unfamiliar with LDA. My first thought was that the base would attack the H of the carbonyl C, I presumed that this H would have the lowest $mathrmpK_mathrma$ because it is an $mathrmsp^2$ C and the C is slightly positive from the carbonyl.
However, the structures this gave were confusing and didn't give the same product for both A and B. I tried to google LDA which showed that it was a big bulky base so it can't attack hindered H, but this shouldn't be a problem as the carbonyl C H isn't hindered. However, I found one mechanism for a different aldehyde that had the H taken from the $mathrmsp^3$ C next to the carbonyl.
Where would LDA preferentially attack an aldehyde and why?
Additional note: I have now played around with the structures to find that the only way LDA could react with A and B to form the same anion C if it in both cases it removes and $ceH+$ from the $mathrmsp^3$ carbon in the structure, these seems counter-intuitive! But perhaps LDA only attacks $mathrmsp^3$ C-H for some reason?
organic-chemistry reaction-mechanism
$endgroup$
$begingroup$
LDA is a very strong base and not fussy about whether it takes an alpha proton or a gamma proton because you will end up with the same extended enolate i.e. C, which is a stable species.
$endgroup$
– Waylander
4 hours ago
$begingroup$
While this question has a good goal, I think it is a terrible question, if this is a homework or exam question, or just an incomplete question if you're asking it yourself. Which enolate should be produced under the circumstances? (E)- or (Z)- ? They are different, non-interconverting, and probably formed in a mixture whose composition is dependent on whether you start from A or B.
$endgroup$
– Zhe
2 hours ago
add a comment |
$begingroup$
Compounds A and B both react with LDA (lithium diisopropylamide, a strong base) to form the same anion C with the formula $ceC4H5O^-Li^+$.
I am unfamiliar with LDA. My first thought was that the base would attack the H of the carbonyl C, I presumed that this H would have the lowest $mathrmpK_mathrma$ because it is an $mathrmsp^2$ C and the C is slightly positive from the carbonyl.
However, the structures this gave were confusing and didn't give the same product for both A and B. I tried to google LDA which showed that it was a big bulky base so it can't attack hindered H, but this shouldn't be a problem as the carbonyl C H isn't hindered. However, I found one mechanism for a different aldehyde that had the H taken from the $mathrmsp^3$ C next to the carbonyl.
Where would LDA preferentially attack an aldehyde and why?
Additional note: I have now played around with the structures to find that the only way LDA could react with A and B to form the same anion C if it in both cases it removes and $ceH+$ from the $mathrmsp^3$ carbon in the structure, these seems counter-intuitive! But perhaps LDA only attacks $mathrmsp^3$ C-H for some reason?
organic-chemistry reaction-mechanism
$endgroup$
Compounds A and B both react with LDA (lithium diisopropylamide, a strong base) to form the same anion C with the formula $ceC4H5O^-Li^+$.
I am unfamiliar with LDA. My first thought was that the base would attack the H of the carbonyl C, I presumed that this H would have the lowest $mathrmpK_mathrma$ because it is an $mathrmsp^2$ C and the C is slightly positive from the carbonyl.
However, the structures this gave were confusing and didn't give the same product for both A and B. I tried to google LDA which showed that it was a big bulky base so it can't attack hindered H, but this shouldn't be a problem as the carbonyl C H isn't hindered. However, I found one mechanism for a different aldehyde that had the H taken from the $mathrmsp^3$ C next to the carbonyl.
Where would LDA preferentially attack an aldehyde and why?
Additional note: I have now played around with the structures to find that the only way LDA could react with A and B to form the same anion C if it in both cases it removes and $ceH+$ from the $mathrmsp^3$ carbon in the structure, these seems counter-intuitive! But perhaps LDA only attacks $mathrmsp^3$ C-H for some reason?
organic-chemistry reaction-mechanism
organic-chemistry reaction-mechanism
edited 40 mins ago
andselisk
19.6k665128
19.6k665128
asked 4 hours ago
MirteMirte
21919
21919
$begingroup$
LDA is a very strong base and not fussy about whether it takes an alpha proton or a gamma proton because you will end up with the same extended enolate i.e. C, which is a stable species.
$endgroup$
– Waylander
4 hours ago
$begingroup$
While this question has a good goal, I think it is a terrible question, if this is a homework or exam question, or just an incomplete question if you're asking it yourself. Which enolate should be produced under the circumstances? (E)- or (Z)- ? They are different, non-interconverting, and probably formed in a mixture whose composition is dependent on whether you start from A or B.
$endgroup$
– Zhe
2 hours ago
add a comment |
$begingroup$
LDA is a very strong base and not fussy about whether it takes an alpha proton or a gamma proton because you will end up with the same extended enolate i.e. C, which is a stable species.
$endgroup$
– Waylander
4 hours ago
$begingroup$
While this question has a good goal, I think it is a terrible question, if this is a homework or exam question, or just an incomplete question if you're asking it yourself. Which enolate should be produced under the circumstances? (E)- or (Z)- ? They are different, non-interconverting, and probably formed in a mixture whose composition is dependent on whether you start from A or B.
$endgroup$
– Zhe
2 hours ago
$begingroup$
LDA is a very strong base and not fussy about whether it takes an alpha proton or a gamma proton because you will end up with the same extended enolate i.e. C, which is a stable species.
$endgroup$
– Waylander
4 hours ago
$begingroup$
LDA is a very strong base and not fussy about whether it takes an alpha proton or a gamma proton because you will end up with the same extended enolate i.e. C, which is a stable species.
$endgroup$
– Waylander
4 hours ago
$begingroup$
While this question has a good goal, I think it is a terrible question, if this is a homework or exam question, or just an incomplete question if you're asking it yourself. Which enolate should be produced under the circumstances? (E)- or (Z)- ? They are different, non-interconverting, and probably formed in a mixture whose composition is dependent on whether you start from A or B.
$endgroup$
– Zhe
2 hours ago
$begingroup$
While this question has a good goal, I think it is a terrible question, if this is a homework or exam question, or just an incomplete question if you're asking it yourself. Which enolate should be produced under the circumstances? (E)- or (Z)- ? They are different, non-interconverting, and probably formed in a mixture whose composition is dependent on whether you start from A or B.
$endgroup$
– Zhe
2 hours ago
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
If electronegativity alone were the only factor in determining the acidity of a carbon-hydrogen bond, the base would in fact attack the aldehyde hydrogen. But that is not so, for delocalization of negative charge can also stabilize the anion. If the base attacks at the initially saturated carbon in either compound, you get a delocalized negative charge distributed throughout the carbon chain and onto the oxygen.
Such delocalization stabilizes the anion so strongly that it overrides the original electronegativity difference between $mathrmsp^2$ and $mathrmsp^3$ carbon atoms. So, the base will attack along the carbon chain to produce this delocalized charge anion, instead of at the carbonyl carbon which offers no such delocalization.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "431"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fchemistry.stackexchange.com%2fquestions%2f112907%2flda-and-an-aldehyde%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If electronegativity alone were the only factor in determining the acidity of a carbon-hydrogen bond, the base would in fact attack the aldehyde hydrogen. But that is not so, for delocalization of negative charge can also stabilize the anion. If the base attacks at the initially saturated carbon in either compound, you get a delocalized negative charge distributed throughout the carbon chain and onto the oxygen.
Such delocalization stabilizes the anion so strongly that it overrides the original electronegativity difference between $mathrmsp^2$ and $mathrmsp^3$ carbon atoms. So, the base will attack along the carbon chain to produce this delocalized charge anion, instead of at the carbonyl carbon which offers no such delocalization.
$endgroup$
add a comment |
$begingroup$
If electronegativity alone were the only factor in determining the acidity of a carbon-hydrogen bond, the base would in fact attack the aldehyde hydrogen. But that is not so, for delocalization of negative charge can also stabilize the anion. If the base attacks at the initially saturated carbon in either compound, you get a delocalized negative charge distributed throughout the carbon chain and onto the oxygen.
Such delocalization stabilizes the anion so strongly that it overrides the original electronegativity difference between $mathrmsp^2$ and $mathrmsp^3$ carbon atoms. So, the base will attack along the carbon chain to produce this delocalized charge anion, instead of at the carbonyl carbon which offers no such delocalization.
$endgroup$
add a comment |
$begingroup$
If electronegativity alone were the only factor in determining the acidity of a carbon-hydrogen bond, the base would in fact attack the aldehyde hydrogen. But that is not so, for delocalization of negative charge can also stabilize the anion. If the base attacks at the initially saturated carbon in either compound, you get a delocalized negative charge distributed throughout the carbon chain and onto the oxygen.
Such delocalization stabilizes the anion so strongly that it overrides the original electronegativity difference between $mathrmsp^2$ and $mathrmsp^3$ carbon atoms. So, the base will attack along the carbon chain to produce this delocalized charge anion, instead of at the carbonyl carbon which offers no such delocalization.
$endgroup$
If electronegativity alone were the only factor in determining the acidity of a carbon-hydrogen bond, the base would in fact attack the aldehyde hydrogen. But that is not so, for delocalization of negative charge can also stabilize the anion. If the base attacks at the initially saturated carbon in either compound, you get a delocalized negative charge distributed throughout the carbon chain and onto the oxygen.
Such delocalization stabilizes the anion so strongly that it overrides the original electronegativity difference between $mathrmsp^2$ and $mathrmsp^3$ carbon atoms. So, the base will attack along the carbon chain to produce this delocalized charge anion, instead of at the carbonyl carbon which offers no such delocalization.
edited 39 mins ago
andselisk
19.6k665128
19.6k665128
answered 3 hours ago
Oscar LanziOscar Lanzi
16.3k12749
16.3k12749
add a comment |
add a comment |
Thanks for contributing an answer to Chemistry Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fchemistry.stackexchange.com%2fquestions%2f112907%2flda-and-an-aldehyde%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
LDA is a very strong base and not fussy about whether it takes an alpha proton or a gamma proton because you will end up with the same extended enolate i.e. C, which is a stable species.
$endgroup$
– Waylander
4 hours ago
$begingroup$
While this question has a good goal, I think it is a terrible question, if this is a homework or exam question, or just an incomplete question if you're asking it yourself. Which enolate should be produced under the circumstances? (E)- or (Z)- ? They are different, non-interconverting, and probably formed in a mixture whose composition is dependent on whether you start from A or B.
$endgroup$
– Zhe
2 hours ago