Existence of subset with given Hausdorff dimensionQuestion on geometric measure theorySubsets of sets of positive Hausdorff dimension with controlled upper Minkowski dimensionHow can dimension depend on the point?Multiplicity of a subcovering in spaces of given Hausdorff dimensionHausdorff dimension of sequence spaceConstruction of null sets with prescribed Hausdorff dimension and generalizationsHausdorff dimension of boundaries of open sets diffeomorphic to $mathbbR^n$Hausdorff approximating measures and Borel setsWhen is Hausdorff measure locally finite?Existence of a discrete subset

Existence of subset with given Hausdorff dimension


Question on geometric measure theorySubsets of sets of positive Hausdorff dimension with controlled upper Minkowski dimensionHow can dimension depend on the point?Multiplicity of a subcovering in spaces of given Hausdorff dimensionHausdorff dimension of sequence spaceConstruction of null sets with prescribed Hausdorff dimension and generalizationsHausdorff dimension of boundaries of open sets diffeomorphic to $mathbbR^n$Hausdorff approximating measures and Borel setsWhen is Hausdorff measure locally finite?Existence of a discrete subset













7












$begingroup$


Let $Asubseteq mathbbR$ be Lebesgue-measurable and let $0<alpha<1$ be its Hausdorff dimension.




For a given $0<beta <alpha$ can we find a subset $Bsubset A$ with Hausdorff dimension $beta$?




In case this is true, could you provide a reference for this statement?



Added: Actually I am happy if $A$ is compact.










share|cite|improve this question











$endgroup$
















    7












    $begingroup$


    Let $Asubseteq mathbbR$ be Lebesgue-measurable and let $0<alpha<1$ be its Hausdorff dimension.




    For a given $0<beta <alpha$ can we find a subset $Bsubset A$ with Hausdorff dimension $beta$?




    In case this is true, could you provide a reference for this statement?



    Added: Actually I am happy if $A$ is compact.










    share|cite|improve this question











    $endgroup$














      7












      7








      7





      $begingroup$


      Let $Asubseteq mathbbR$ be Lebesgue-measurable and let $0<alpha<1$ be its Hausdorff dimension.




      For a given $0<beta <alpha$ can we find a subset $Bsubset A$ with Hausdorff dimension $beta$?




      In case this is true, could you provide a reference for this statement?



      Added: Actually I am happy if $A$ is compact.










      share|cite|improve this question











      $endgroup$




      Let $Asubseteq mathbbR$ be Lebesgue-measurable and let $0<alpha<1$ be its Hausdorff dimension.




      For a given $0<beta <alpha$ can we find a subset $Bsubset A$ with Hausdorff dimension $beta$?




      In case this is true, could you provide a reference for this statement?



      Added: Actually I am happy if $A$ is compact.







      reference-request geometric-measure-theory






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 4 hours ago







      Severin Schraven

















      asked 8 hours ago









      Severin SchravenSeverin Schraven

      21918




      21918




















          2 Answers
          2






          active

          oldest

          votes


















          3












          $begingroup$

          Here is a partial answer. First of all, $dim_H (A) = alpha$ iff $ H^k(A)=infty$ for all $k<beta$ and $H^k(A) = 0$ for all $k>beta$. Then $H^alpha(A) = infty$ for all $alpha in (0,beta)$. If $A$ is closed then by Theorem 5.4 from The Geometry of Fractal Sets by Falconer there is a compact $Ksubset A$ such that $0<H^alpha(K)<infty$.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            That's exactly what I was looking for, thanks very much.
            $endgroup$
            – Severin Schraven
            5 hours ago










          • $begingroup$
            Actually it is worth mentioning that in the same reference in Theorem 5.6, this is generalized to Souslin spaces.
            $endgroup$
            – Severin Schraven
            3 hours ago


















          4












          $begingroup$

          The answer is yes under the additional assumption that the set is compact and I do not know what happens in the general case. The result is a consequence of the following one, see [1] and references therein.




          Theorem. If a compact set $AsubsetmathbbR^n$ has non-$sigma$-finite measure $mathcalH^beta$, then there us a
          subset $Bsubset A$ such that $0<mathcalH^beta<infty$.




          [1] R.O. Davies,
          A theorem on the existence of non-σ-finite subsets.
          Mathematika 15 (1968), 60–62.






          share|cite|improve this answer











          $endgroup$








          • 2




            $begingroup$
            I actually have a question (which is the reason why I wrote that my answer is partial): in the OP it is assumed that $A$ is Lebesgue measurable. Strictly saying this does not imply that $A$ is Borel, so it is not immediate that the result we both eventually refer to can be used (if $A$ were Borel or at least Souslin then yes).
            $endgroup$
            – Skeeve
            6 hours ago







          • 1




            $begingroup$
            @Skeeve Good point. I do not know what happens in general, but perhaps the compact case is sufficient for the needs of OP. Let's hear from him. I will changes my answer to emphasize that it only answers the compact case. By the way you know a lot of geometric measure theory so you should be more active :) There are not too many of us.
            $endgroup$
            – Piotr Hajlasz
            6 hours ago











          • $begingroup$
            @PiotrHajlasz Indeed, the compact case is fine for me. Thanks for the answer.
            $endgroup$
            – Severin Schraven
            5 hours ago










          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "504"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f325532%2fexistence-of-subset-with-given-hausdorff-dimension%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          3












          $begingroup$

          Here is a partial answer. First of all, $dim_H (A) = alpha$ iff $ H^k(A)=infty$ for all $k<beta$ and $H^k(A) = 0$ for all $k>beta$. Then $H^alpha(A) = infty$ for all $alpha in (0,beta)$. If $A$ is closed then by Theorem 5.4 from The Geometry of Fractal Sets by Falconer there is a compact $Ksubset A$ such that $0<H^alpha(K)<infty$.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            That's exactly what I was looking for, thanks very much.
            $endgroup$
            – Severin Schraven
            5 hours ago










          • $begingroup$
            Actually it is worth mentioning that in the same reference in Theorem 5.6, this is generalized to Souslin spaces.
            $endgroup$
            – Severin Schraven
            3 hours ago















          3












          $begingroup$

          Here is a partial answer. First of all, $dim_H (A) = alpha$ iff $ H^k(A)=infty$ for all $k<beta$ and $H^k(A) = 0$ for all $k>beta$. Then $H^alpha(A) = infty$ for all $alpha in (0,beta)$. If $A$ is closed then by Theorem 5.4 from The Geometry of Fractal Sets by Falconer there is a compact $Ksubset A$ such that $0<H^alpha(K)<infty$.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            That's exactly what I was looking for, thanks very much.
            $endgroup$
            – Severin Schraven
            5 hours ago










          • $begingroup$
            Actually it is worth mentioning that in the same reference in Theorem 5.6, this is generalized to Souslin spaces.
            $endgroup$
            – Severin Schraven
            3 hours ago













          3












          3








          3





          $begingroup$

          Here is a partial answer. First of all, $dim_H (A) = alpha$ iff $ H^k(A)=infty$ for all $k<beta$ and $H^k(A) = 0$ for all $k>beta$. Then $H^alpha(A) = infty$ for all $alpha in (0,beta)$. If $A$ is closed then by Theorem 5.4 from The Geometry of Fractal Sets by Falconer there is a compact $Ksubset A$ such that $0<H^alpha(K)<infty$.






          share|cite|improve this answer









          $endgroup$



          Here is a partial answer. First of all, $dim_H (A) = alpha$ iff $ H^k(A)=infty$ for all $k<beta$ and $H^k(A) = 0$ for all $k>beta$. Then $H^alpha(A) = infty$ for all $alpha in (0,beta)$. If $A$ is closed then by Theorem 5.4 from The Geometry of Fractal Sets by Falconer there is a compact $Ksubset A$ such that $0<H^alpha(K)<infty$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 6 hours ago









          SkeeveSkeeve

          30914




          30914











          • $begingroup$
            That's exactly what I was looking for, thanks very much.
            $endgroup$
            – Severin Schraven
            5 hours ago










          • $begingroup$
            Actually it is worth mentioning that in the same reference in Theorem 5.6, this is generalized to Souslin spaces.
            $endgroup$
            – Severin Schraven
            3 hours ago
















          • $begingroup$
            That's exactly what I was looking for, thanks very much.
            $endgroup$
            – Severin Schraven
            5 hours ago










          • $begingroup$
            Actually it is worth mentioning that in the same reference in Theorem 5.6, this is generalized to Souslin spaces.
            $endgroup$
            – Severin Schraven
            3 hours ago















          $begingroup$
          That's exactly what I was looking for, thanks very much.
          $endgroup$
          – Severin Schraven
          5 hours ago




          $begingroup$
          That's exactly what I was looking for, thanks very much.
          $endgroup$
          – Severin Schraven
          5 hours ago












          $begingroup$
          Actually it is worth mentioning that in the same reference in Theorem 5.6, this is generalized to Souslin spaces.
          $endgroup$
          – Severin Schraven
          3 hours ago




          $begingroup$
          Actually it is worth mentioning that in the same reference in Theorem 5.6, this is generalized to Souslin spaces.
          $endgroup$
          – Severin Schraven
          3 hours ago











          4












          $begingroup$

          The answer is yes under the additional assumption that the set is compact and I do not know what happens in the general case. The result is a consequence of the following one, see [1] and references therein.




          Theorem. If a compact set $AsubsetmathbbR^n$ has non-$sigma$-finite measure $mathcalH^beta$, then there us a
          subset $Bsubset A$ such that $0<mathcalH^beta<infty$.




          [1] R.O. Davies,
          A theorem on the existence of non-σ-finite subsets.
          Mathematika 15 (1968), 60–62.






          share|cite|improve this answer











          $endgroup$








          • 2




            $begingroup$
            I actually have a question (which is the reason why I wrote that my answer is partial): in the OP it is assumed that $A$ is Lebesgue measurable. Strictly saying this does not imply that $A$ is Borel, so it is not immediate that the result we both eventually refer to can be used (if $A$ were Borel or at least Souslin then yes).
            $endgroup$
            – Skeeve
            6 hours ago







          • 1




            $begingroup$
            @Skeeve Good point. I do not know what happens in general, but perhaps the compact case is sufficient for the needs of OP. Let's hear from him. I will changes my answer to emphasize that it only answers the compact case. By the way you know a lot of geometric measure theory so you should be more active :) There are not too many of us.
            $endgroup$
            – Piotr Hajlasz
            6 hours ago











          • $begingroup$
            @PiotrHajlasz Indeed, the compact case is fine for me. Thanks for the answer.
            $endgroup$
            – Severin Schraven
            5 hours ago















          4












          $begingroup$

          The answer is yes under the additional assumption that the set is compact and I do not know what happens in the general case. The result is a consequence of the following one, see [1] and references therein.




          Theorem. If a compact set $AsubsetmathbbR^n$ has non-$sigma$-finite measure $mathcalH^beta$, then there us a
          subset $Bsubset A$ such that $0<mathcalH^beta<infty$.




          [1] R.O. Davies,
          A theorem on the existence of non-σ-finite subsets.
          Mathematika 15 (1968), 60–62.






          share|cite|improve this answer











          $endgroup$








          • 2




            $begingroup$
            I actually have a question (which is the reason why I wrote that my answer is partial): in the OP it is assumed that $A$ is Lebesgue measurable. Strictly saying this does not imply that $A$ is Borel, so it is not immediate that the result we both eventually refer to can be used (if $A$ were Borel or at least Souslin then yes).
            $endgroup$
            – Skeeve
            6 hours ago







          • 1




            $begingroup$
            @Skeeve Good point. I do not know what happens in general, but perhaps the compact case is sufficient for the needs of OP. Let's hear from him. I will changes my answer to emphasize that it only answers the compact case. By the way you know a lot of geometric measure theory so you should be more active :) There are not too many of us.
            $endgroup$
            – Piotr Hajlasz
            6 hours ago











          • $begingroup$
            @PiotrHajlasz Indeed, the compact case is fine for me. Thanks for the answer.
            $endgroup$
            – Severin Schraven
            5 hours ago













          4












          4








          4





          $begingroup$

          The answer is yes under the additional assumption that the set is compact and I do not know what happens in the general case. The result is a consequence of the following one, see [1] and references therein.




          Theorem. If a compact set $AsubsetmathbbR^n$ has non-$sigma$-finite measure $mathcalH^beta$, then there us a
          subset $Bsubset A$ such that $0<mathcalH^beta<infty$.




          [1] R.O. Davies,
          A theorem on the existence of non-σ-finite subsets.
          Mathematika 15 (1968), 60–62.






          share|cite|improve this answer











          $endgroup$



          The answer is yes under the additional assumption that the set is compact and I do not know what happens in the general case. The result is a consequence of the following one, see [1] and references therein.




          Theorem. If a compact set $AsubsetmathbbR^n$ has non-$sigma$-finite measure $mathcalH^beta$, then there us a
          subset $Bsubset A$ such that $0<mathcalH^beta<infty$.




          [1] R.O. Davies,
          A theorem on the existence of non-σ-finite subsets.
          Mathematika 15 (1968), 60–62.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 5 hours ago

























          answered 6 hours ago









          Piotr HajlaszPiotr Hajlasz

          9,75843873




          9,75843873







          • 2




            $begingroup$
            I actually have a question (which is the reason why I wrote that my answer is partial): in the OP it is assumed that $A$ is Lebesgue measurable. Strictly saying this does not imply that $A$ is Borel, so it is not immediate that the result we both eventually refer to can be used (if $A$ were Borel or at least Souslin then yes).
            $endgroup$
            – Skeeve
            6 hours ago







          • 1




            $begingroup$
            @Skeeve Good point. I do not know what happens in general, but perhaps the compact case is sufficient for the needs of OP. Let's hear from him. I will changes my answer to emphasize that it only answers the compact case. By the way you know a lot of geometric measure theory so you should be more active :) There are not too many of us.
            $endgroup$
            – Piotr Hajlasz
            6 hours ago











          • $begingroup$
            @PiotrHajlasz Indeed, the compact case is fine for me. Thanks for the answer.
            $endgroup$
            – Severin Schraven
            5 hours ago












          • 2




            $begingroup$
            I actually have a question (which is the reason why I wrote that my answer is partial): in the OP it is assumed that $A$ is Lebesgue measurable. Strictly saying this does not imply that $A$ is Borel, so it is not immediate that the result we both eventually refer to can be used (if $A$ were Borel or at least Souslin then yes).
            $endgroup$
            – Skeeve
            6 hours ago







          • 1




            $begingroup$
            @Skeeve Good point. I do not know what happens in general, but perhaps the compact case is sufficient for the needs of OP. Let's hear from him. I will changes my answer to emphasize that it only answers the compact case. By the way you know a lot of geometric measure theory so you should be more active :) There are not too many of us.
            $endgroup$
            – Piotr Hajlasz
            6 hours ago











          • $begingroup$
            @PiotrHajlasz Indeed, the compact case is fine for me. Thanks for the answer.
            $endgroup$
            – Severin Schraven
            5 hours ago







          2




          2




          $begingroup$
          I actually have a question (which is the reason why I wrote that my answer is partial): in the OP it is assumed that $A$ is Lebesgue measurable. Strictly saying this does not imply that $A$ is Borel, so it is not immediate that the result we both eventually refer to can be used (if $A$ were Borel or at least Souslin then yes).
          $endgroup$
          – Skeeve
          6 hours ago





          $begingroup$
          I actually have a question (which is the reason why I wrote that my answer is partial): in the OP it is assumed that $A$ is Lebesgue measurable. Strictly saying this does not imply that $A$ is Borel, so it is not immediate that the result we both eventually refer to can be used (if $A$ were Borel or at least Souslin then yes).
          $endgroup$
          – Skeeve
          6 hours ago





          1




          1




          $begingroup$
          @Skeeve Good point. I do not know what happens in general, but perhaps the compact case is sufficient for the needs of OP. Let's hear from him. I will changes my answer to emphasize that it only answers the compact case. By the way you know a lot of geometric measure theory so you should be more active :) There are not too many of us.
          $endgroup$
          – Piotr Hajlasz
          6 hours ago





          $begingroup$
          @Skeeve Good point. I do not know what happens in general, but perhaps the compact case is sufficient for the needs of OP. Let's hear from him. I will changes my answer to emphasize that it only answers the compact case. By the way you know a lot of geometric measure theory so you should be more active :) There are not too many of us.
          $endgroup$
          – Piotr Hajlasz
          6 hours ago













          $begingroup$
          @PiotrHajlasz Indeed, the compact case is fine for me. Thanks for the answer.
          $endgroup$
          – Severin Schraven
          5 hours ago




          $begingroup$
          @PiotrHajlasz Indeed, the compact case is fine for me. Thanks for the answer.
          $endgroup$
          – Severin Schraven
          5 hours ago

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to MathOverflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f325532%2fexistence-of-subset-with-given-hausdorff-dimension%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          名間水力發電廠 目录 沿革 設施 鄰近設施 註釋 外部連結 导航菜单23°50′10″N 120°42′41″E / 23.83611°N 120.71139°E / 23.83611; 120.7113923°50′10″N 120°42′41″E / 23.83611°N 120.71139°E / 23.83611; 120.71139計畫概要原始内容臺灣第一座BOT 模式開發的水力發電廠-名間水力電廠名間水力發電廠 水利署首件BOT案原始内容《小檔案》名間電廠 首座BOT水力發電廠原始内容名間電廠BOT - 經濟部水利署中區水資源局

          Is my guitar’s action too high? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Strings too stiff on a recently purchased acoustic guitar | Cort AD880CEIs the action of my guitar really high?Μy little finger is too weak to play guitarWith guitar, how long should I give my fingers to strengthen / callous?When playing a fret the guitar sounds mutedPlaying (Barre) chords up the guitar neckI think my guitar strings are wound too tight and I can't play barre chordsF barre chord on an SG guitarHow to find to the right strings of a barre chord by feel?High action on higher fret on my steel acoustic guitar

          香港授勳及嘉獎制度 目录 勳章及獎狀類別 嘉獎等級 授勳及嘉獎提名 統計數字 多次獲頒勳章或獎狀的人士 爭議 褫奪機制 参考文献 外部連結 参见 导航菜单統計數字一九九七年七月二日(星期三)香港特別行政區的授勳制度六七暴動領袖獲大紫荊勳章 董建華被斥為肯定殺人放火董建華授勳楊光 議員窮追猛打蘋論:顛倒是非黑白的大紫荊董讚楊光有貢獻避談暴動董拒答授勳楊光原因撤除勳銜撤除勳銜撤除勳銜特首掌「搣柴」生殺權行為失當罪 隨時「搣柴」失長糧政府刊憲 許仕仁郭炳江遭「搣柴」去年中終極上訴失敗 許仕仁郭炳江撤勳章太平紳士猛料阿Sir講古—— 「搣柴」有故一九九八年授勳名單一九九九年授勳名單二○○三年授勳名單二○○八年授勳名單二○○七年授勳名單政府總部禮賓處 - 授勳及嘉獎香港特別行政區勳章綬帶一覽(PDF)(非官方)