Relation between independence and correlation of uniform random variablesCorrelations with a linear combination means correlation with individual variables?Geometric mean of uniform variablesHow to Test Independence of Poisson Variables?If $X$ and $Y$ are normally distributed random variables, what kind of distribution their sum follows?Distribution of X-U(0,1) conditioned on sigma algebra of Y/X, where is Y is U(0,1)?Is there a parametric joint distribution such that $X$ and $Y$ are both uniform and $mathbbE[Y ;|; X]$ is linear?Are two Random Variables Independent if their support has a dependency?Correlation of the sigmoid function of normal random varaiblesIntuitive reason why jointly normal and uncorrelated imply independenceConditional maximum likelihood of AR(1) UNIFORM PROCESS

A Ri-diddley-iley Riddle

Turning a hard to access nut?

Practical application of matrices and determinants

Writing in a Christian voice

What does Deadpool mean by "left the house in that shirt"?

Variable completely messes up echoed string

What can I do if I am asked to learn different programming languages very frequently?

Calculate the frequency of characters in a string

How is the partial sum of a geometric sequence calculated?

Matrix using tikz package

Am I eligible for the Eurail Youth pass? I am 27.5 years old

Can a wizard cast a spell during their first turn of combat if they initiated combat by releasing a readied spell?

Print last inputted byte

How does one measure the Fourier components of a signal?

Does the attack bonus from a Masterwork weapon stack with the attack bonus from Masterwork ammunition?

How to get the n-th line after a grepped one?

Help rendering a complicated sum/product formula

Do native speakers use "ultima" and "proxima" frequently in spoken English?

What should I install to correct "ld: cannot find -lgbm and -linput" so that I can compile a Rust program?

Should I use acronyms in dialogues before telling the readers what it stands for in fiction?

How do hiring committees for research positions view getting "scooped"?

Does multi-classing into Fighter give you heavy armor proficiency?

Relation between independence and correlation of uniform random variables

Using Past-Perfect interchangeably with the Past Continuous



Relation between independence and correlation of uniform random variables


Correlations with a linear combination means correlation with individual variables?Geometric mean of uniform variablesHow to Test Independence of Poisson Variables?If $X$ and $Y$ are normally distributed random variables, what kind of distribution their sum follows?Distribution of X-U(0,1) conditioned on sigma algebra of Y/X, where is Y is U(0,1)?Is there a parametric joint distribution such that $X$ and $Y$ are both uniform and $mathbbE[Y ;|; X]$ is linear?Are two Random Variables Independent if their support has a dependency?Correlation of the sigmoid function of normal random varaiblesIntuitive reason why jointly normal and uncorrelated imply independenceConditional maximum likelihood of AR(1) UNIFORM PROCESS













1












$begingroup$


My question is fairly simple: let $X$ and $Y$ be two uncorrelated uniform random variables on $[-1,1]$. Are they independent?



I was under the impression that two random, uncorrelated variables are only necessarily independent if their joint distribution is normal, however I can't come up with a counterexample to disprove the claim I ask about. Either a counterexample or a proof would be greatly appreciated.










share|cite|improve this question









$endgroup$
















    1












    $begingroup$


    My question is fairly simple: let $X$ and $Y$ be two uncorrelated uniform random variables on $[-1,1]$. Are they independent?



    I was under the impression that two random, uncorrelated variables are only necessarily independent if their joint distribution is normal, however I can't come up with a counterexample to disprove the claim I ask about. Either a counterexample or a proof would be greatly appreciated.










    share|cite|improve this question









    $endgroup$














      1












      1








      1





      $begingroup$


      My question is fairly simple: let $X$ and $Y$ be two uncorrelated uniform random variables on $[-1,1]$. Are they independent?



      I was under the impression that two random, uncorrelated variables are only necessarily independent if their joint distribution is normal, however I can't come up with a counterexample to disprove the claim I ask about. Either a counterexample or a proof would be greatly appreciated.










      share|cite|improve this question









      $endgroup$




      My question is fairly simple: let $X$ and $Y$ be two uncorrelated uniform random variables on $[-1,1]$. Are they independent?



      I was under the impression that two random, uncorrelated variables are only necessarily independent if their joint distribution is normal, however I can't come up with a counterexample to disprove the claim I ask about. Either a counterexample or a proof would be greatly appreciated.







      correlation independence uniform






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 2 hours ago









      PeiffapPeiffap

      153




      153




















          1 Answer
          1






          active

          oldest

          votes


















          5












          $begingroup$

          Independent implies uncorrelated but the implication doesn't go the other way.



          Uncorrelated implies independence only under certain conditions. e.g. if you have a bivariate normal, it is the case that uncorrelated implies independent (as you said).



          It is easy to construct bivariate distributions with uniform margins where the variables are uncorrelated but are not independent. Here are a few examples:



          1. consider an additional random variable $B$ which takes the values $pm 1$ each with probability $frac12$, independent of $X$. Then let $Y=BX$.


          2. take the bivariate distribution of two independent uniforms and slice it in 4 equal-size sections on each margin (yielding $4times 4=16$ pieces, each of size $frac12timesfrac12$). Now take all the probability from the 4 corner pieces and the 4 center pieces and put it evenly into the other 8 pieces.


          3. Let $Y = 2|X|-1$.


          In each case, the variables are uncorrelated but not independent (e.g. if $X=1$, what is $P(-0.1<Y<0.1$?)



          Plot of bivariate distribution for each case



          If you specify some particular family of bivariate distributions with uniform margins it might be possible that under that formulation the only uncorrelated one is independent. Then under that condition, being uncorrelated would imply independence -- but you haven't said anything about the bivariate distribution, only about the marginal distributions.



          For example, if you restrict your attention to say the Gaussian copula, then I think the only uncorrelated one has independent margins; you can readily rescale that so that each margin is on (-1,1).




          Some R code for sampling from and plotting these bivariates (not necessarily efficiently):



          n <- 100000
          x <- runif(n,-1,1)
          b <- rbinom(n,1,.5)*2-1
          y1 <-b*x
          y2 <-ifelse(0.5<abs(x)&abs(x)<1,
          runif(n,-.5,.5),
          runif(n,0.5,1)*b
          )
          y3 <- 2*abs(x)-1

          par(mfrow=c(1,3))
          plot(x,y1,pch=16,cex=.3,col=rgb(.5,.5,.5,.5))
          plot(x,y2,pch=16,cex=.5,col=rgb(.5,.5,.5,.5))
          abline(h=c(-1,-.5,0,.5,1),col=4,lty=3)
          abline(v=c(-1,-.5,0,.5,1),col=4,lty=3)
          plot(x,y3,pch=16,cex=.3,col=rgb(.5,.5,.5,.5))


          (In this formulation, $(Y_2, Y_3)$ gives a fourth example)






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            Thank you. I'm struggling to see why the examples you provided still guarantee that $Y$ is uniformly distributed on $[-1, 1]$, though.
            $endgroup$
            – Peiffap
            1 hour ago











          • $begingroup$
            Do the plots of the bivariate densities help? In each case the shaded parts are all of constant density
            $endgroup$
            – Glen_b
            53 mins ago











          • $begingroup$
            They make it visually clearer, yes. Thank you, again.
            $endgroup$
            – Peiffap
            50 mins ago










          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "65"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f398050%2frelation-between-independence-and-correlation-of-uniform-random-variables%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          5












          $begingroup$

          Independent implies uncorrelated but the implication doesn't go the other way.



          Uncorrelated implies independence only under certain conditions. e.g. if you have a bivariate normal, it is the case that uncorrelated implies independent (as you said).



          It is easy to construct bivariate distributions with uniform margins where the variables are uncorrelated but are not independent. Here are a few examples:



          1. consider an additional random variable $B$ which takes the values $pm 1$ each with probability $frac12$, independent of $X$. Then let $Y=BX$.


          2. take the bivariate distribution of two independent uniforms and slice it in 4 equal-size sections on each margin (yielding $4times 4=16$ pieces, each of size $frac12timesfrac12$). Now take all the probability from the 4 corner pieces and the 4 center pieces and put it evenly into the other 8 pieces.


          3. Let $Y = 2|X|-1$.


          In each case, the variables are uncorrelated but not independent (e.g. if $X=1$, what is $P(-0.1<Y<0.1$?)



          Plot of bivariate distribution for each case



          If you specify some particular family of bivariate distributions with uniform margins it might be possible that under that formulation the only uncorrelated one is independent. Then under that condition, being uncorrelated would imply independence -- but you haven't said anything about the bivariate distribution, only about the marginal distributions.



          For example, if you restrict your attention to say the Gaussian copula, then I think the only uncorrelated one has independent margins; you can readily rescale that so that each margin is on (-1,1).




          Some R code for sampling from and plotting these bivariates (not necessarily efficiently):



          n <- 100000
          x <- runif(n,-1,1)
          b <- rbinom(n,1,.5)*2-1
          y1 <-b*x
          y2 <-ifelse(0.5<abs(x)&abs(x)<1,
          runif(n,-.5,.5),
          runif(n,0.5,1)*b
          )
          y3 <- 2*abs(x)-1

          par(mfrow=c(1,3))
          plot(x,y1,pch=16,cex=.3,col=rgb(.5,.5,.5,.5))
          plot(x,y2,pch=16,cex=.5,col=rgb(.5,.5,.5,.5))
          abline(h=c(-1,-.5,0,.5,1),col=4,lty=3)
          abline(v=c(-1,-.5,0,.5,1),col=4,lty=3)
          plot(x,y3,pch=16,cex=.3,col=rgb(.5,.5,.5,.5))


          (In this formulation, $(Y_2, Y_3)$ gives a fourth example)






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            Thank you. I'm struggling to see why the examples you provided still guarantee that $Y$ is uniformly distributed on $[-1, 1]$, though.
            $endgroup$
            – Peiffap
            1 hour ago











          • $begingroup$
            Do the plots of the bivariate densities help? In each case the shaded parts are all of constant density
            $endgroup$
            – Glen_b
            53 mins ago











          • $begingroup$
            They make it visually clearer, yes. Thank you, again.
            $endgroup$
            – Peiffap
            50 mins ago















          5












          $begingroup$

          Independent implies uncorrelated but the implication doesn't go the other way.



          Uncorrelated implies independence only under certain conditions. e.g. if you have a bivariate normal, it is the case that uncorrelated implies independent (as you said).



          It is easy to construct bivariate distributions with uniform margins where the variables are uncorrelated but are not independent. Here are a few examples:



          1. consider an additional random variable $B$ which takes the values $pm 1$ each with probability $frac12$, independent of $X$. Then let $Y=BX$.


          2. take the bivariate distribution of two independent uniforms and slice it in 4 equal-size sections on each margin (yielding $4times 4=16$ pieces, each of size $frac12timesfrac12$). Now take all the probability from the 4 corner pieces and the 4 center pieces and put it evenly into the other 8 pieces.


          3. Let $Y = 2|X|-1$.


          In each case, the variables are uncorrelated but not independent (e.g. if $X=1$, what is $P(-0.1<Y<0.1$?)



          Plot of bivariate distribution for each case



          If you specify some particular family of bivariate distributions with uniform margins it might be possible that under that formulation the only uncorrelated one is independent. Then under that condition, being uncorrelated would imply independence -- but you haven't said anything about the bivariate distribution, only about the marginal distributions.



          For example, if you restrict your attention to say the Gaussian copula, then I think the only uncorrelated one has independent margins; you can readily rescale that so that each margin is on (-1,1).




          Some R code for sampling from and plotting these bivariates (not necessarily efficiently):



          n <- 100000
          x <- runif(n,-1,1)
          b <- rbinom(n,1,.5)*2-1
          y1 <-b*x
          y2 <-ifelse(0.5<abs(x)&abs(x)<1,
          runif(n,-.5,.5),
          runif(n,0.5,1)*b
          )
          y3 <- 2*abs(x)-1

          par(mfrow=c(1,3))
          plot(x,y1,pch=16,cex=.3,col=rgb(.5,.5,.5,.5))
          plot(x,y2,pch=16,cex=.5,col=rgb(.5,.5,.5,.5))
          abline(h=c(-1,-.5,0,.5,1),col=4,lty=3)
          abline(v=c(-1,-.5,0,.5,1),col=4,lty=3)
          plot(x,y3,pch=16,cex=.3,col=rgb(.5,.5,.5,.5))


          (In this formulation, $(Y_2, Y_3)$ gives a fourth example)






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            Thank you. I'm struggling to see why the examples you provided still guarantee that $Y$ is uniformly distributed on $[-1, 1]$, though.
            $endgroup$
            – Peiffap
            1 hour ago











          • $begingroup$
            Do the plots of the bivariate densities help? In each case the shaded parts are all of constant density
            $endgroup$
            – Glen_b
            53 mins ago











          • $begingroup$
            They make it visually clearer, yes. Thank you, again.
            $endgroup$
            – Peiffap
            50 mins ago













          5












          5








          5





          $begingroup$

          Independent implies uncorrelated but the implication doesn't go the other way.



          Uncorrelated implies independence only under certain conditions. e.g. if you have a bivariate normal, it is the case that uncorrelated implies independent (as you said).



          It is easy to construct bivariate distributions with uniform margins where the variables are uncorrelated but are not independent. Here are a few examples:



          1. consider an additional random variable $B$ which takes the values $pm 1$ each with probability $frac12$, independent of $X$. Then let $Y=BX$.


          2. take the bivariate distribution of two independent uniforms and slice it in 4 equal-size sections on each margin (yielding $4times 4=16$ pieces, each of size $frac12timesfrac12$). Now take all the probability from the 4 corner pieces and the 4 center pieces and put it evenly into the other 8 pieces.


          3. Let $Y = 2|X|-1$.


          In each case, the variables are uncorrelated but not independent (e.g. if $X=1$, what is $P(-0.1<Y<0.1$?)



          Plot of bivariate distribution for each case



          If you specify some particular family of bivariate distributions with uniform margins it might be possible that under that formulation the only uncorrelated one is independent. Then under that condition, being uncorrelated would imply independence -- but you haven't said anything about the bivariate distribution, only about the marginal distributions.



          For example, if you restrict your attention to say the Gaussian copula, then I think the only uncorrelated one has independent margins; you can readily rescale that so that each margin is on (-1,1).




          Some R code for sampling from and plotting these bivariates (not necessarily efficiently):



          n <- 100000
          x <- runif(n,-1,1)
          b <- rbinom(n,1,.5)*2-1
          y1 <-b*x
          y2 <-ifelse(0.5<abs(x)&abs(x)<1,
          runif(n,-.5,.5),
          runif(n,0.5,1)*b
          )
          y3 <- 2*abs(x)-1

          par(mfrow=c(1,3))
          plot(x,y1,pch=16,cex=.3,col=rgb(.5,.5,.5,.5))
          plot(x,y2,pch=16,cex=.5,col=rgb(.5,.5,.5,.5))
          abline(h=c(-1,-.5,0,.5,1),col=4,lty=3)
          abline(v=c(-1,-.5,0,.5,1),col=4,lty=3)
          plot(x,y3,pch=16,cex=.3,col=rgb(.5,.5,.5,.5))


          (In this formulation, $(Y_2, Y_3)$ gives a fourth example)






          share|cite|improve this answer











          $endgroup$



          Independent implies uncorrelated but the implication doesn't go the other way.



          Uncorrelated implies independence only under certain conditions. e.g. if you have a bivariate normal, it is the case that uncorrelated implies independent (as you said).



          It is easy to construct bivariate distributions with uniform margins where the variables are uncorrelated but are not independent. Here are a few examples:



          1. consider an additional random variable $B$ which takes the values $pm 1$ each with probability $frac12$, independent of $X$. Then let $Y=BX$.


          2. take the bivariate distribution of two independent uniforms and slice it in 4 equal-size sections on each margin (yielding $4times 4=16$ pieces, each of size $frac12timesfrac12$). Now take all the probability from the 4 corner pieces and the 4 center pieces and put it evenly into the other 8 pieces.


          3. Let $Y = 2|X|-1$.


          In each case, the variables are uncorrelated but not independent (e.g. if $X=1$, what is $P(-0.1<Y<0.1$?)



          Plot of bivariate distribution for each case



          If you specify some particular family of bivariate distributions with uniform margins it might be possible that under that formulation the only uncorrelated one is independent. Then under that condition, being uncorrelated would imply independence -- but you haven't said anything about the bivariate distribution, only about the marginal distributions.



          For example, if you restrict your attention to say the Gaussian copula, then I think the only uncorrelated one has independent margins; you can readily rescale that so that each margin is on (-1,1).




          Some R code for sampling from and plotting these bivariates (not necessarily efficiently):



          n <- 100000
          x <- runif(n,-1,1)
          b <- rbinom(n,1,.5)*2-1
          y1 <-b*x
          y2 <-ifelse(0.5<abs(x)&abs(x)<1,
          runif(n,-.5,.5),
          runif(n,0.5,1)*b
          )
          y3 <- 2*abs(x)-1

          par(mfrow=c(1,3))
          plot(x,y1,pch=16,cex=.3,col=rgb(.5,.5,.5,.5))
          plot(x,y2,pch=16,cex=.5,col=rgb(.5,.5,.5,.5))
          abline(h=c(-1,-.5,0,.5,1),col=4,lty=3)
          abline(v=c(-1,-.5,0,.5,1),col=4,lty=3)
          plot(x,y3,pch=16,cex=.3,col=rgb(.5,.5,.5,.5))


          (In this formulation, $(Y_2, Y_3)$ gives a fourth example)







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 23 mins ago

























          answered 1 hour ago









          Glen_bGlen_b

          213k22413763




          213k22413763











          • $begingroup$
            Thank you. I'm struggling to see why the examples you provided still guarantee that $Y$ is uniformly distributed on $[-1, 1]$, though.
            $endgroup$
            – Peiffap
            1 hour ago











          • $begingroup$
            Do the plots of the bivariate densities help? In each case the shaded parts are all of constant density
            $endgroup$
            – Glen_b
            53 mins ago











          • $begingroup$
            They make it visually clearer, yes. Thank you, again.
            $endgroup$
            – Peiffap
            50 mins ago
















          • $begingroup$
            Thank you. I'm struggling to see why the examples you provided still guarantee that $Y$ is uniformly distributed on $[-1, 1]$, though.
            $endgroup$
            – Peiffap
            1 hour ago











          • $begingroup$
            Do the plots of the bivariate densities help? In each case the shaded parts are all of constant density
            $endgroup$
            – Glen_b
            53 mins ago











          • $begingroup$
            They make it visually clearer, yes. Thank you, again.
            $endgroup$
            – Peiffap
            50 mins ago















          $begingroup$
          Thank you. I'm struggling to see why the examples you provided still guarantee that $Y$ is uniformly distributed on $[-1, 1]$, though.
          $endgroup$
          – Peiffap
          1 hour ago





          $begingroup$
          Thank you. I'm struggling to see why the examples you provided still guarantee that $Y$ is uniformly distributed on $[-1, 1]$, though.
          $endgroup$
          – Peiffap
          1 hour ago













          $begingroup$
          Do the plots of the bivariate densities help? In each case the shaded parts are all of constant density
          $endgroup$
          – Glen_b
          53 mins ago





          $begingroup$
          Do the plots of the bivariate densities help? In each case the shaded parts are all of constant density
          $endgroup$
          – Glen_b
          53 mins ago













          $begingroup$
          They make it visually clearer, yes. Thank you, again.
          $endgroup$
          – Peiffap
          50 mins ago




          $begingroup$
          They make it visually clearer, yes. Thank you, again.
          $endgroup$
          – Peiffap
          50 mins ago

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Cross Validated!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f398050%2frelation-between-independence-and-correlation-of-uniform-random-variables%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          名間水力發電廠 目录 沿革 設施 鄰近設施 註釋 外部連結 导航菜单23°50′10″N 120°42′41″E / 23.83611°N 120.71139°E / 23.83611; 120.7113923°50′10″N 120°42′41″E / 23.83611°N 120.71139°E / 23.83611; 120.71139計畫概要原始内容臺灣第一座BOT 模式開發的水力發電廠-名間水力電廠名間水力發電廠 水利署首件BOT案原始内容《小檔案》名間電廠 首座BOT水力發電廠原始内容名間電廠BOT - 經濟部水利署中區水資源局

          Prove that NP is closed under karp reduction?Space(n) not closed under Karp reductions - what about NTime(n)?Class P is closed under rotation?Prove or disprove that $NL$ is closed under polynomial many-one reductions$mathbfNC_2$ is closed under log-space reductionOn Karp reductionwhen can I know if a class (complexity) is closed under reduction (cook/karp)Check if class $PSPACE$ is closed under polyonomially space reductionIs NPSPACE also closed under polynomial-time reduction and under log-space reduction?Prove PSPACE is closed under complement?Prove PSPACE is closed under union?

          Is my guitar’s action too high? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Strings too stiff on a recently purchased acoustic guitar | Cort AD880CEIs the action of my guitar really high?Μy little finger is too weak to play guitarWith guitar, how long should I give my fingers to strengthen / callous?When playing a fret the guitar sounds mutedPlaying (Barre) chords up the guitar neckI think my guitar strings are wound too tight and I can't play barre chordsF barre chord on an SG guitarHow to find to the right strings of a barre chord by feel?High action on higher fret on my steel acoustic guitar