High Q peak in frequency response means what in time domain? The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)What circuit can use a falling edge to trigger this damped oscillating impulse waveform?Frequency response?How do PID controllers effect time domain and frequency domain responseMaximum Response time meaning?Questions about modelling a typical crystal radio and simulating in LTspiceWhat improved frequency response means?Some questions on a passive network's transfer function and time domain responseMid- and lowband frequency response of CEFrequency domain representationHigh frequency response of capacitors

Sort a list of pairs representing an acyclic, partial automorphism

How does ice melt when immersed in water?

Windows 10: How to Lock (not sleep) laptop on lid close?

How to stretch delimiters to envolve matrices inside of a kbordermatrix?

Can the prologue be the backstory of your main character?

ELI5: Why do they say that Israel would have been the fourth country to land a spacecraft on the Moon and why do they call it low cost?

Does Parliament hold absolute power in the UK?

Can a novice safely splice in wire to lengthen 5V charging cable?

What are these Gizmos at Izaña Atmospheric Research Center in Spain?

Relations between two reciprocal partial derivatives?

Are my PIs rude or am I just being too sensitive?

Didn't get enough time to take a Coding Test - what to do now?

How many people can fit inside Mordenkainen's Magnificent Mansion?

Do working physicists consider Newtonian mechanics to be "falsified"?

How to copy the contents of all files with a certain name into a new file?

I could not break this equation. Please help me

How to split my screen on my Macbook Air?

system() function string length limit

When did F become S in typeography, and why?

The variadic template constructor of my class cannot modify my class members, why is that so?

What is this lever in Argentinian toilets?

How can I define good in a religion that claims no moral authority?

Why did all the guest students take carriages to the Yule Ball?

First use of “packing” as in carrying a gun



High Q peak in frequency response means what in time domain?



The 2019 Stack Overflow Developer Survey Results Are In
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)What circuit can use a falling edge to trigger this damped oscillating impulse waveform?Frequency response?How do PID controllers effect time domain and frequency domain responseMaximum Response time meaning?Questions about modelling a typical crystal radio and simulating in LTspiceWhat improved frequency response means?Some questions on a passive network's transfer function and time domain responseMid- and lowband frequency response of CEFrequency domain representationHigh frequency response of capacitors



.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








1












$begingroup$


Reading Linear Circuit Transfer Functions and one of the graphs got me curious.



I've recreated the circuit (series RLC) and plotted the frequency response for a Q of 7.



enter image description here



We have a peak of ~16.3 dB when Q is 7 @ 10Khz.



Can this value be used (16.3 dB) to accurately predict something in the time domain - such as the value of Q or how long the oscillatory decay would take, the amplitude of the oscillations etc.. ?



Added in case its relevent
enter image description here










share|improve this question











$endgroup$











  • $begingroup$
    How did you measure the decay and value vs Q on this example?"
    $endgroup$
    – Sunnyskyguy EE75
    3 hours ago











  • $begingroup$
    @SunnyskyguyEE75 I don't fully understand the question. I caculated the values for my R L and C to give me a Q = 0.5 and Q = 7 (green and blue respectively). In this case, I know ahead of time, the Q and f because its what I used to calculate R, L and C
    $endgroup$
    – efox29
    3 hours ago










  • $begingroup$
    because the Zreal=Zreactive for Q=1 the apparent voltage amplitude from phasor current is sqrt (1+1) = sqrt(2) so for Q>>1 it equals gain , try Q=1
    $endgroup$
    – Sunnyskyguy EE75
    3 hours ago











  • $begingroup$
    Did you get an ringing T asymptote of about 300us for 7 ?. So if T=300us = 1/(2πΔf) or Δf= then 530Hz yet Δf=fo/Q = 10k/7=1.43k
    $endgroup$
    – Sunnyskyguy EE75
    3 hours ago

















1












$begingroup$


Reading Linear Circuit Transfer Functions and one of the graphs got me curious.



I've recreated the circuit (series RLC) and plotted the frequency response for a Q of 7.



enter image description here



We have a peak of ~16.3 dB when Q is 7 @ 10Khz.



Can this value be used (16.3 dB) to accurately predict something in the time domain - such as the value of Q or how long the oscillatory decay would take, the amplitude of the oscillations etc.. ?



Added in case its relevent
enter image description here










share|improve this question











$endgroup$











  • $begingroup$
    How did you measure the decay and value vs Q on this example?"
    $endgroup$
    – Sunnyskyguy EE75
    3 hours ago











  • $begingroup$
    @SunnyskyguyEE75 I don't fully understand the question. I caculated the values for my R L and C to give me a Q = 0.5 and Q = 7 (green and blue respectively). In this case, I know ahead of time, the Q and f because its what I used to calculate R, L and C
    $endgroup$
    – efox29
    3 hours ago










  • $begingroup$
    because the Zreal=Zreactive for Q=1 the apparent voltage amplitude from phasor current is sqrt (1+1) = sqrt(2) so for Q>>1 it equals gain , try Q=1
    $endgroup$
    – Sunnyskyguy EE75
    3 hours ago











  • $begingroup$
    Did you get an ringing T asymptote of about 300us for 7 ?. So if T=300us = 1/(2πΔf) or Δf= then 530Hz yet Δf=fo/Q = 10k/7=1.43k
    $endgroup$
    – Sunnyskyguy EE75
    3 hours ago













1












1








1





$begingroup$


Reading Linear Circuit Transfer Functions and one of the graphs got me curious.



I've recreated the circuit (series RLC) and plotted the frequency response for a Q of 7.



enter image description here



We have a peak of ~16.3 dB when Q is 7 @ 10Khz.



Can this value be used (16.3 dB) to accurately predict something in the time domain - such as the value of Q or how long the oscillatory decay would take, the amplitude of the oscillations etc.. ?



Added in case its relevent
enter image description here










share|improve this question











$endgroup$




Reading Linear Circuit Transfer Functions and one of the graphs got me curious.



I've recreated the circuit (series RLC) and plotted the frequency response for a Q of 7.



enter image description here



We have a peak of ~16.3 dB when Q is 7 @ 10Khz.



Can this value be used (16.3 dB) to accurately predict something in the time domain - such as the value of Q or how long the oscillatory decay would take, the amplitude of the oscillations etc.. ?



Added in case its relevent
enter image description here







passive-networks frequency-response






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited 3 hours ago







efox29

















asked 5 hours ago









efox29efox29

8,06953481




8,06953481











  • $begingroup$
    How did you measure the decay and value vs Q on this example?"
    $endgroup$
    – Sunnyskyguy EE75
    3 hours ago











  • $begingroup$
    @SunnyskyguyEE75 I don't fully understand the question. I caculated the values for my R L and C to give me a Q = 0.5 and Q = 7 (green and blue respectively). In this case, I know ahead of time, the Q and f because its what I used to calculate R, L and C
    $endgroup$
    – efox29
    3 hours ago










  • $begingroup$
    because the Zreal=Zreactive for Q=1 the apparent voltage amplitude from phasor current is sqrt (1+1) = sqrt(2) so for Q>>1 it equals gain , try Q=1
    $endgroup$
    – Sunnyskyguy EE75
    3 hours ago











  • $begingroup$
    Did you get an ringing T asymptote of about 300us for 7 ?. So if T=300us = 1/(2πΔf) or Δf= then 530Hz yet Δf=fo/Q = 10k/7=1.43k
    $endgroup$
    – Sunnyskyguy EE75
    3 hours ago
















  • $begingroup$
    How did you measure the decay and value vs Q on this example?"
    $endgroup$
    – Sunnyskyguy EE75
    3 hours ago











  • $begingroup$
    @SunnyskyguyEE75 I don't fully understand the question. I caculated the values for my R L and C to give me a Q = 0.5 and Q = 7 (green and blue respectively). In this case, I know ahead of time, the Q and f because its what I used to calculate R, L and C
    $endgroup$
    – efox29
    3 hours ago










  • $begingroup$
    because the Zreal=Zreactive for Q=1 the apparent voltage amplitude from phasor current is sqrt (1+1) = sqrt(2) so for Q>>1 it equals gain , try Q=1
    $endgroup$
    – Sunnyskyguy EE75
    3 hours ago











  • $begingroup$
    Did you get an ringing T asymptote of about 300us for 7 ?. So if T=300us = 1/(2πΔf) or Δf= then 530Hz yet Δf=fo/Q = 10k/7=1.43k
    $endgroup$
    – Sunnyskyguy EE75
    3 hours ago















$begingroup$
How did you measure the decay and value vs Q on this example?"
$endgroup$
– Sunnyskyguy EE75
3 hours ago





$begingroup$
How did you measure the decay and value vs Q on this example?"
$endgroup$
– Sunnyskyguy EE75
3 hours ago













$begingroup$
@SunnyskyguyEE75 I don't fully understand the question. I caculated the values for my R L and C to give me a Q = 0.5 and Q = 7 (green and blue respectively). In this case, I know ahead of time, the Q and f because its what I used to calculate R, L and C
$endgroup$
– efox29
3 hours ago




$begingroup$
@SunnyskyguyEE75 I don't fully understand the question. I caculated the values for my R L and C to give me a Q = 0.5 and Q = 7 (green and blue respectively). In this case, I know ahead of time, the Q and f because its what I used to calculate R, L and C
$endgroup$
– efox29
3 hours ago












$begingroup$
because the Zreal=Zreactive for Q=1 the apparent voltage amplitude from phasor current is sqrt (1+1) = sqrt(2) so for Q>>1 it equals gain , try Q=1
$endgroup$
– Sunnyskyguy EE75
3 hours ago





$begingroup$
because the Zreal=Zreactive for Q=1 the apparent voltage amplitude from phasor current is sqrt (1+1) = sqrt(2) so for Q>>1 it equals gain , try Q=1
$endgroup$
– Sunnyskyguy EE75
3 hours ago













$begingroup$
Did you get an ringing T asymptote of about 300us for 7 ?. So if T=300us = 1/(2πΔf) or Δf= then 530Hz yet Δf=fo/Q = 10k/7=1.43k
$endgroup$
– Sunnyskyguy EE75
3 hours ago




$begingroup$
Did you get an ringing T asymptote of about 300us for 7 ?. So if T=300us = 1/(2πΔf) or Δf= then 530Hz yet Δf=fo/Q = 10k/7=1.43k
$endgroup$
– Sunnyskyguy EE75
3 hours ago










1 Answer
1






active

oldest

votes


















3












$begingroup$

Q is (among other definitions) the voltage gain at resonance, and a voltage gain of 7 times is $$20 * log(7) = 16.9dB$$ which seems close enough as your cursor is clearly not actually on resonance (phase would be -90 not -93). So dB of resonant gain is trivially converted to or from Q.



Q gives you risetime and whether the circuit is over/under or critically damped in the time domain, as well as how well damped the ringing in an under damped circuit is.






share|improve this answer









$endgroup$












  • $begingroup$
    It's always something simple. This has given me a items to explore deeper into.
    $endgroup$
    – efox29
    4 hours ago










  • $begingroup$
    I though Av= √1+Q² so when Q=1 Av=1.414 or +3dB and for LPF the f-3dB breakpoints are not symmetrical about peak unlike a simple BPF so your Q=6.6 ( close enuf)
    $endgroup$
    – Sunnyskyguy EE75
    4 hours ago












Your Answer






StackExchange.ifUsing("editor", function ()
return StackExchange.using("schematics", function ()
StackExchange.schematics.init();
);
, "cicuitlab");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "135"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2felectronics.stackexchange.com%2fquestions%2f432436%2fhigh-q-peak-in-frequency-response-means-what-in-time-domain%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









3












$begingroup$

Q is (among other definitions) the voltage gain at resonance, and a voltage gain of 7 times is $$20 * log(7) = 16.9dB$$ which seems close enough as your cursor is clearly not actually on resonance (phase would be -90 not -93). So dB of resonant gain is trivially converted to or from Q.



Q gives you risetime and whether the circuit is over/under or critically damped in the time domain, as well as how well damped the ringing in an under damped circuit is.






share|improve this answer









$endgroup$












  • $begingroup$
    It's always something simple. This has given me a items to explore deeper into.
    $endgroup$
    – efox29
    4 hours ago










  • $begingroup$
    I though Av= √1+Q² so when Q=1 Av=1.414 or +3dB and for LPF the f-3dB breakpoints are not symmetrical about peak unlike a simple BPF so your Q=6.6 ( close enuf)
    $endgroup$
    – Sunnyskyguy EE75
    4 hours ago
















3












$begingroup$

Q is (among other definitions) the voltage gain at resonance, and a voltage gain of 7 times is $$20 * log(7) = 16.9dB$$ which seems close enough as your cursor is clearly not actually on resonance (phase would be -90 not -93). So dB of resonant gain is trivially converted to or from Q.



Q gives you risetime and whether the circuit is over/under or critically damped in the time domain, as well as how well damped the ringing in an under damped circuit is.






share|improve this answer









$endgroup$












  • $begingroup$
    It's always something simple. This has given me a items to explore deeper into.
    $endgroup$
    – efox29
    4 hours ago










  • $begingroup$
    I though Av= √1+Q² so when Q=1 Av=1.414 or +3dB and for LPF the f-3dB breakpoints are not symmetrical about peak unlike a simple BPF so your Q=6.6 ( close enuf)
    $endgroup$
    – Sunnyskyguy EE75
    4 hours ago














3












3








3





$begingroup$

Q is (among other definitions) the voltage gain at resonance, and a voltage gain of 7 times is $$20 * log(7) = 16.9dB$$ which seems close enough as your cursor is clearly not actually on resonance (phase would be -90 not -93). So dB of resonant gain is trivially converted to or from Q.



Q gives you risetime and whether the circuit is over/under or critically damped in the time domain, as well as how well damped the ringing in an under damped circuit is.






share|improve this answer









$endgroup$



Q is (among other definitions) the voltage gain at resonance, and a voltage gain of 7 times is $$20 * log(7) = 16.9dB$$ which seems close enough as your cursor is clearly not actually on resonance (phase would be -90 not -93). So dB of resonant gain is trivially converted to or from Q.



Q gives you risetime and whether the circuit is over/under or critically damped in the time domain, as well as how well damped the ringing in an under damped circuit is.







share|improve this answer












share|improve this answer



share|improve this answer










answered 4 hours ago









Dan MillsDan Mills

12.2k11225




12.2k11225











  • $begingroup$
    It's always something simple. This has given me a items to explore deeper into.
    $endgroup$
    – efox29
    4 hours ago










  • $begingroup$
    I though Av= √1+Q² so when Q=1 Av=1.414 or +3dB and for LPF the f-3dB breakpoints are not symmetrical about peak unlike a simple BPF so your Q=6.6 ( close enuf)
    $endgroup$
    – Sunnyskyguy EE75
    4 hours ago

















  • $begingroup$
    It's always something simple. This has given me a items to explore deeper into.
    $endgroup$
    – efox29
    4 hours ago










  • $begingroup$
    I though Av= √1+Q² so when Q=1 Av=1.414 or +3dB and for LPF the f-3dB breakpoints are not symmetrical about peak unlike a simple BPF so your Q=6.6 ( close enuf)
    $endgroup$
    – Sunnyskyguy EE75
    4 hours ago
















$begingroup$
It's always something simple. This has given me a items to explore deeper into.
$endgroup$
– efox29
4 hours ago




$begingroup$
It's always something simple. This has given me a items to explore deeper into.
$endgroup$
– efox29
4 hours ago












$begingroup$
I though Av= √1+Q² so when Q=1 Av=1.414 or +3dB and for LPF the f-3dB breakpoints are not symmetrical about peak unlike a simple BPF so your Q=6.6 ( close enuf)
$endgroup$
– Sunnyskyguy EE75
4 hours ago





$begingroup$
I though Av= √1+Q² so when Q=1 Av=1.414 or +3dB and for LPF the f-3dB breakpoints are not symmetrical about peak unlike a simple BPF so your Q=6.6 ( close enuf)
$endgroup$
– Sunnyskyguy EE75
4 hours ago


















draft saved

draft discarded
















































Thanks for contributing an answer to Electrical Engineering Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2felectronics.stackexchange.com%2fquestions%2f432436%2fhigh-q-peak-in-frequency-response-means-what-in-time-domain%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

名間水力發電廠 目录 沿革 設施 鄰近設施 註釋 外部連結 导航菜单23°50′10″N 120°42′41″E / 23.83611°N 120.71139°E / 23.83611; 120.7113923°50′10″N 120°42′41″E / 23.83611°N 120.71139°E / 23.83611; 120.71139計畫概要原始内容臺灣第一座BOT 模式開發的水力發電廠-名間水力電廠名間水力發電廠 水利署首件BOT案原始内容《小檔案》名間電廠 首座BOT水力發電廠原始内容名間電廠BOT - 經濟部水利署中區水資源局

Prove that NP is closed under karp reduction?Space(n) not closed under Karp reductions - what about NTime(n)?Class P is closed under rotation?Prove or disprove that $NL$ is closed under polynomial many-one reductions$mathbfNC_2$ is closed under log-space reductionOn Karp reductionwhen can I know if a class (complexity) is closed under reduction (cook/karp)Check if class $PSPACE$ is closed under polyonomially space reductionIs NPSPACE also closed under polynomial-time reduction and under log-space reduction?Prove PSPACE is closed under complement?Prove PSPACE is closed under union?

Is my guitar’s action too high? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Strings too stiff on a recently purchased acoustic guitar | Cort AD880CEIs the action of my guitar really high?Μy little finger is too weak to play guitarWith guitar, how long should I give my fingers to strengthen / callous?When playing a fret the guitar sounds mutedPlaying (Barre) chords up the guitar neckI think my guitar strings are wound too tight and I can't play barre chordsF barre chord on an SG guitarHow to find to the right strings of a barre chord by feel?High action on higher fret on my steel acoustic guitar