What is special about square numbers here? The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)The final state of 1000 light bulbs switched on/off by 1000 people passing byWord Problem Proof? (just for fun, help)Enigma : of Wizards, Dwarves and HatsCoin Arrangement Puzzlecreating a more complex sudoku (69x6)Determining the favored penny on a chessboardHow many different ways can I add three numbers to get a certain sum?Board game - winning strategyDifference PuzzlesCould someone come up with a formula explaining the following?How many ways to place three distinguishable tokens on the white spaces of a $4$-by-$4$ chess board?
Simulating Exploding Dice
Windows 10: How to Lock (not sleep) laptop on lid close?
Road tyres vs "Street" tyres for charity ride on MTB Tandem
Segmentation fault output is suppressed when piping stdin into a function. Why?
Problems with Ubuntu mount /tmp
Is it ethical to upload a automatically generated paper to a non peer-reviewed site as part of a larger research?
What can I do if neighbor is blocking my solar panels intentionally?
"... to apply for a visa" or "... and applied for a visa"?
Can the prologue be the backstory of your main character?
Hopping to infinity along a string of digits
Finding the path in a graph from A to B then back to A with a minimum of shared edges
Did the UK government pay "millions and millions of dollars" to try to snag Julian Assange?
Relations between two reciprocal partial derivatives?
Python - Fishing Simulator
The following signatures were invalid: EXPKEYSIG 1397BC53640DB551
Can withdrawing asylum be illegal?
Why is superheterodyning better than direct conversion?
Is it ok to offer lower paid work as a trial period before negotiating for a full-time job?
How to pronounce 1ターン?
How do you keep chess fun when your opponent constantly beats you?
In horse breeding, what is the female equivalent of putting a horse out "to stud"?
Make it rain characters
How are presidential pardons supposed to be used?
Difference between "generating set" and free product?
What is special about square numbers here?
The 2019 Stack Overflow Developer Survey Results Are In
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)The final state of 1000 light bulbs switched on/off by 1000 people passing byWord Problem Proof? (just for fun, help)Enigma : of Wizards, Dwarves and HatsCoin Arrangement Puzzlecreating a more complex sudoku (69x6)Determining the favored penny on a chessboardHow many different ways can I add three numbers to get a certain sum?Board game - winning strategyDifference PuzzlesCould someone come up with a formula explaining the following?How many ways to place three distinguishable tokens on the white spaces of a $4$-by-$4$ chess board?
$begingroup$
I'm not not schooled in math. I'm 50 years old and I only have about a grade 8 level. But I do enjoy math and heard a question in the show "Growing Pains of a Teenage Genius" that interested me. So please forgive me. I do not speak "math."
The question has been posted here already, but I don't think the correct answer was given, and since I'm new, I haven't earned the points to be able to comment on that post. So I've started my own post.
The question is, if you have 1000 pennies lined up in a row, all heads up, and you turn over every second penny, then every third penny, then every fourth penny, etc. all the way until you turn over the thousandth and last penny, which ones will be heads up?
I've figured out that the answer is that the square numbers will be heads up. It is only the square numbers that will be flipped an even number of times to land them in the position they started out in. But I don't know why that is.
What is it about square numbers that they are the only ones that get flipped an even number of times through the process of flipping every 2nd, 3rd, 4th,...etc, penny?
I thought it must have something to do with factoring since the primes will only get flipped once, but the widening gap between each succession of flips is a bit complicated to visualize, and I don't know how to work that with factoring square numbers.
Is there something special about factoring square numbers that's applicable here?
How do you visualize this problem mathematically?
puzzle
New contributor
$endgroup$
add a comment |
$begingroup$
I'm not not schooled in math. I'm 50 years old and I only have about a grade 8 level. But I do enjoy math and heard a question in the show "Growing Pains of a Teenage Genius" that interested me. So please forgive me. I do not speak "math."
The question has been posted here already, but I don't think the correct answer was given, and since I'm new, I haven't earned the points to be able to comment on that post. So I've started my own post.
The question is, if you have 1000 pennies lined up in a row, all heads up, and you turn over every second penny, then every third penny, then every fourth penny, etc. all the way until you turn over the thousandth and last penny, which ones will be heads up?
I've figured out that the answer is that the square numbers will be heads up. It is only the square numbers that will be flipped an even number of times to land them in the position they started out in. But I don't know why that is.
What is it about square numbers that they are the only ones that get flipped an even number of times through the process of flipping every 2nd, 3rd, 4th,...etc, penny?
I thought it must have something to do with factoring since the primes will only get flipped once, but the widening gap between each succession of flips is a bit complicated to visualize, and I don't know how to work that with factoring square numbers.
Is there something special about factoring square numbers that's applicable here?
How do you visualize this problem mathematically?
puzzle
New contributor
$endgroup$
1
$begingroup$
You may find this of interest: math.stackexchange.com/questions/11223/…
$endgroup$
– Minus One-Twelfth
58 mins ago
add a comment |
$begingroup$
I'm not not schooled in math. I'm 50 years old and I only have about a grade 8 level. But I do enjoy math and heard a question in the show "Growing Pains of a Teenage Genius" that interested me. So please forgive me. I do not speak "math."
The question has been posted here already, but I don't think the correct answer was given, and since I'm new, I haven't earned the points to be able to comment on that post. So I've started my own post.
The question is, if you have 1000 pennies lined up in a row, all heads up, and you turn over every second penny, then every third penny, then every fourth penny, etc. all the way until you turn over the thousandth and last penny, which ones will be heads up?
I've figured out that the answer is that the square numbers will be heads up. It is only the square numbers that will be flipped an even number of times to land them in the position they started out in. But I don't know why that is.
What is it about square numbers that they are the only ones that get flipped an even number of times through the process of flipping every 2nd, 3rd, 4th,...etc, penny?
I thought it must have something to do with factoring since the primes will only get flipped once, but the widening gap between each succession of flips is a bit complicated to visualize, and I don't know how to work that with factoring square numbers.
Is there something special about factoring square numbers that's applicable here?
How do you visualize this problem mathematically?
puzzle
New contributor
$endgroup$
I'm not not schooled in math. I'm 50 years old and I only have about a grade 8 level. But I do enjoy math and heard a question in the show "Growing Pains of a Teenage Genius" that interested me. So please forgive me. I do not speak "math."
The question has been posted here already, but I don't think the correct answer was given, and since I'm new, I haven't earned the points to be able to comment on that post. So I've started my own post.
The question is, if you have 1000 pennies lined up in a row, all heads up, and you turn over every second penny, then every third penny, then every fourth penny, etc. all the way until you turn over the thousandth and last penny, which ones will be heads up?
I've figured out that the answer is that the square numbers will be heads up. It is only the square numbers that will be flipped an even number of times to land them in the position they started out in. But I don't know why that is.
What is it about square numbers that they are the only ones that get flipped an even number of times through the process of flipping every 2nd, 3rd, 4th,...etc, penny?
I thought it must have something to do with factoring since the primes will only get flipped once, but the widening gap between each succession of flips is a bit complicated to visualize, and I don't know how to work that with factoring square numbers.
Is there something special about factoring square numbers that's applicable here?
How do you visualize this problem mathematically?
puzzle
puzzle
New contributor
New contributor
New contributor
asked 1 hour ago
DeeHDeeH
112
112
New contributor
New contributor
1
$begingroup$
You may find this of interest: math.stackexchange.com/questions/11223/…
$endgroup$
– Minus One-Twelfth
58 mins ago
add a comment |
1
$begingroup$
You may find this of interest: math.stackexchange.com/questions/11223/…
$endgroup$
– Minus One-Twelfth
58 mins ago
1
1
$begingroup$
You may find this of interest: math.stackexchange.com/questions/11223/…
$endgroup$
– Minus One-Twelfth
58 mins ago
$begingroup$
You may find this of interest: math.stackexchange.com/questions/11223/…
$endgroup$
– Minus One-Twelfth
58 mins ago
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Each penny will be flipped a number of times equal to the number of divisors it has (including or not including $1$ based on the specific wording of the problem).
Supposing that $d$ is a divisor of $n$, i.e. that there is some $k$ such that $n = dtimes k$, then $k$ is also a divisor. In the event that $k$ is different than $d$ then it will be counted separately than $d$ when counting the total number of divisors. In this way, every single divisor $d$ of $n$ that we wish to count will have a corresponding different divisor $k=fracnd$.
All except the circumstance where $n$ happens to be a square number $n=r^2$ in which case you have $r$ is a divisor and the corresponding paired divisor $fracnr$ is again equal to $r$ and so is not distinct and need not be counted a second time.
Let's look at $12$ for an example.
$12$ has the divisors $colorred1,colorblue2,colorpurple3,colorpurple4,colorblue6,colorred12$. Note how the numbers with matching colors are paired together and multiply together to give $12$.
Now, let's look at a square number as an example like $16$.
$16$ has the divisors $colorred1,colorblue2,colorpurple4,colorblue8,colorred16$. Notice here again we have the numbers with matching color multiply together to get $16$. However, in the center since $16$ is square you only have one number of that color, not two, again because the corresponding divisor associated with it happens to be the same number. This pattern continues for all numbers. Every square number has an odd number of divisors and every non-square number has an even number of divisors and it is for this reason that the only pennies left turned heads up will be the ones at the square number positions.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
DeeH is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3186800%2fwhat-is-special-about-square-numbers-here%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Each penny will be flipped a number of times equal to the number of divisors it has (including or not including $1$ based on the specific wording of the problem).
Supposing that $d$ is a divisor of $n$, i.e. that there is some $k$ such that $n = dtimes k$, then $k$ is also a divisor. In the event that $k$ is different than $d$ then it will be counted separately than $d$ when counting the total number of divisors. In this way, every single divisor $d$ of $n$ that we wish to count will have a corresponding different divisor $k=fracnd$.
All except the circumstance where $n$ happens to be a square number $n=r^2$ in which case you have $r$ is a divisor and the corresponding paired divisor $fracnr$ is again equal to $r$ and so is not distinct and need not be counted a second time.
Let's look at $12$ for an example.
$12$ has the divisors $colorred1,colorblue2,colorpurple3,colorpurple4,colorblue6,colorred12$. Note how the numbers with matching colors are paired together and multiply together to give $12$.
Now, let's look at a square number as an example like $16$.
$16$ has the divisors $colorred1,colorblue2,colorpurple4,colorblue8,colorred16$. Notice here again we have the numbers with matching color multiply together to get $16$. However, in the center since $16$ is square you only have one number of that color, not two, again because the corresponding divisor associated with it happens to be the same number. This pattern continues for all numbers. Every square number has an odd number of divisors and every non-square number has an even number of divisors and it is for this reason that the only pennies left turned heads up will be the ones at the square number positions.
$endgroup$
add a comment |
$begingroup$
Each penny will be flipped a number of times equal to the number of divisors it has (including or not including $1$ based on the specific wording of the problem).
Supposing that $d$ is a divisor of $n$, i.e. that there is some $k$ such that $n = dtimes k$, then $k$ is also a divisor. In the event that $k$ is different than $d$ then it will be counted separately than $d$ when counting the total number of divisors. In this way, every single divisor $d$ of $n$ that we wish to count will have a corresponding different divisor $k=fracnd$.
All except the circumstance where $n$ happens to be a square number $n=r^2$ in which case you have $r$ is a divisor and the corresponding paired divisor $fracnr$ is again equal to $r$ and so is not distinct and need not be counted a second time.
Let's look at $12$ for an example.
$12$ has the divisors $colorred1,colorblue2,colorpurple3,colorpurple4,colorblue6,colorred12$. Note how the numbers with matching colors are paired together and multiply together to give $12$.
Now, let's look at a square number as an example like $16$.
$16$ has the divisors $colorred1,colorblue2,colorpurple4,colorblue8,colorred16$. Notice here again we have the numbers with matching color multiply together to get $16$. However, in the center since $16$ is square you only have one number of that color, not two, again because the corresponding divisor associated with it happens to be the same number. This pattern continues for all numbers. Every square number has an odd number of divisors and every non-square number has an even number of divisors and it is for this reason that the only pennies left turned heads up will be the ones at the square number positions.
$endgroup$
add a comment |
$begingroup$
Each penny will be flipped a number of times equal to the number of divisors it has (including or not including $1$ based on the specific wording of the problem).
Supposing that $d$ is a divisor of $n$, i.e. that there is some $k$ such that $n = dtimes k$, then $k$ is also a divisor. In the event that $k$ is different than $d$ then it will be counted separately than $d$ when counting the total number of divisors. In this way, every single divisor $d$ of $n$ that we wish to count will have a corresponding different divisor $k=fracnd$.
All except the circumstance where $n$ happens to be a square number $n=r^2$ in which case you have $r$ is a divisor and the corresponding paired divisor $fracnr$ is again equal to $r$ and so is not distinct and need not be counted a second time.
Let's look at $12$ for an example.
$12$ has the divisors $colorred1,colorblue2,colorpurple3,colorpurple4,colorblue6,colorred12$. Note how the numbers with matching colors are paired together and multiply together to give $12$.
Now, let's look at a square number as an example like $16$.
$16$ has the divisors $colorred1,colorblue2,colorpurple4,colorblue8,colorred16$. Notice here again we have the numbers with matching color multiply together to get $16$. However, in the center since $16$ is square you only have one number of that color, not two, again because the corresponding divisor associated with it happens to be the same number. This pattern continues for all numbers. Every square number has an odd number of divisors and every non-square number has an even number of divisors and it is for this reason that the only pennies left turned heads up will be the ones at the square number positions.
$endgroup$
Each penny will be flipped a number of times equal to the number of divisors it has (including or not including $1$ based on the specific wording of the problem).
Supposing that $d$ is a divisor of $n$, i.e. that there is some $k$ such that $n = dtimes k$, then $k$ is also a divisor. In the event that $k$ is different than $d$ then it will be counted separately than $d$ when counting the total number of divisors. In this way, every single divisor $d$ of $n$ that we wish to count will have a corresponding different divisor $k=fracnd$.
All except the circumstance where $n$ happens to be a square number $n=r^2$ in which case you have $r$ is a divisor and the corresponding paired divisor $fracnr$ is again equal to $r$ and so is not distinct and need not be counted a second time.
Let's look at $12$ for an example.
$12$ has the divisors $colorred1,colorblue2,colorpurple3,colorpurple4,colorblue6,colorred12$. Note how the numbers with matching colors are paired together and multiply together to give $12$.
Now, let's look at a square number as an example like $16$.
$16$ has the divisors $colorred1,colorblue2,colorpurple4,colorblue8,colorred16$. Notice here again we have the numbers with matching color multiply together to get $16$. However, in the center since $16$ is square you only have one number of that color, not two, again because the corresponding divisor associated with it happens to be the same number. This pattern continues for all numbers. Every square number has an odd number of divisors and every non-square number has an even number of divisors and it is for this reason that the only pennies left turned heads up will be the ones at the square number positions.
answered 48 mins ago
JMoravitzJMoravitz
49k43990
49k43990
add a comment |
add a comment |
DeeH is a new contributor. Be nice, and check out our Code of Conduct.
DeeH is a new contributor. Be nice, and check out our Code of Conduct.
DeeH is a new contributor. Be nice, and check out our Code of Conduct.
DeeH is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3186800%2fwhat-is-special-about-square-numbers-here%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
You may find this of interest: math.stackexchange.com/questions/11223/…
$endgroup$
– Minus One-Twelfth
58 mins ago