Proof involving the spectral radius and the Jordan canonical form Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Spectral radius of the Volterra operatorExample that the Jordan canonical form is not “robust.”What is the purpose of Jordan Canonical Form?Confusion between spectral radius of matrix and spectral radius of the operatorComputing the Jordan Form of a MatrixSpectral radius of perturbed bipartite graphsA proof involving invertible $ntimes n$ matricesProof of Gelfand's formula without using $rho(A) < 1$ iff $lim A^n = 0$Help with (generalized) eigenspace, Jordan basis, and polynomialsFinding the Jordan Form of a matrix…

Is there a Spanish version of "dot your i's and cross your t's" that includes the letter 'ñ'?

If a contract sometimes uses the wrong name, is it still valid?

How to draw this diagram using TikZ package?

What is the longest distance a 13th-level monk can jump while attacking on the same turn?

Proof involving the spectral radius and the Jordan canonical form

When is phishing education going too far?

Center align columns in table ignoring minus signs?

Why does Python start at index -1 when indexing a list from the end?

What happens to sewage if there is no river near by?

What is this single-engine low-wing propeller plane?

Letter Boxed validator

I am not a queen, who am I?

If Jon Snow became King of the Seven Kingdoms what would his regnal number be?

Is above average number of years spent on PhD considered a red flag in future academia or industry positions?

Is 1 ppb equal to 1 μg/kg?

Sorting numerically

Is there a "higher Segal conjecture"?

Can a non-EU citizen traveling with me come with me through the EU passport line?

What would be the ideal power source for a cybernetic eye?

Does accepting a pardon have any bearing on trying that person for the same crime in a sovereign jurisdiction?

Is there a documented rationale why the House Ways and Means chairman can demand tax info?

Withdrew £2800, but only £2000 shows as withdrawn on online banking; what are my obligations?

Does surprise arrest existing movement?

Why did the IBM 650 use bi-quinary?



Proof involving the spectral radius and the Jordan canonical form



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Spectral radius of the Volterra operatorExample that the Jordan canonical form is not “robust.”What is the purpose of Jordan Canonical Form?Confusion between spectral radius of matrix and spectral radius of the operatorComputing the Jordan Form of a MatrixSpectral radius of perturbed bipartite graphsA proof involving invertible $ntimes n$ matricesProof of Gelfand's formula without using $rho(A) < 1$ iff $lim A^n = 0$Help with (generalized) eigenspace, Jordan basis, and polynomialsFinding the Jordan Form of a matrix…










2












$begingroup$



Let $A$ be a square matrix. Show that if $$lim_n to infty A^n = 0$$ then $rho(A) < 1$, where $rho(A)$ denotes the spectral radius of $A$.



Hint: Use the Jordan canonical form.




I am self-studying and have been working through a few linear algebra exercises. I'm struggling a bit in applying the hint to this problem — I don't know where to start. Any help appreciated.










share|cite|improve this question











$endgroup$
















    2












    $begingroup$



    Let $A$ be a square matrix. Show that if $$lim_n to infty A^n = 0$$ then $rho(A) < 1$, where $rho(A)$ denotes the spectral radius of $A$.



    Hint: Use the Jordan canonical form.




    I am self-studying and have been working through a few linear algebra exercises. I'm struggling a bit in applying the hint to this problem — I don't know where to start. Any help appreciated.










    share|cite|improve this question











    $endgroup$














      2












      2








      2





      $begingroup$



      Let $A$ be a square matrix. Show that if $$lim_n to infty A^n = 0$$ then $rho(A) < 1$, where $rho(A)$ denotes the spectral radius of $A$.



      Hint: Use the Jordan canonical form.




      I am self-studying and have been working through a few linear algebra exercises. I'm struggling a bit in applying the hint to this problem — I don't know where to start. Any help appreciated.










      share|cite|improve this question











      $endgroup$





      Let $A$ be a square matrix. Show that if $$lim_n to infty A^n = 0$$ then $rho(A) < 1$, where $rho(A)$ denotes the spectral radius of $A$.



      Hint: Use the Jordan canonical form.




      I am self-studying and have been working through a few linear algebra exercises. I'm struggling a bit in applying the hint to this problem — I don't know where to start. Any help appreciated.







      linear-algebra matrices jordan-normal-form spectral-radius






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 23 mins ago









      Rodrigo de Azevedo

      13.2k41961




      13.2k41961










      asked 1 hour ago









      mXdXmXdX

      1068




      1068




















          2 Answers
          2






          active

          oldest

          votes


















          5












          $begingroup$

          You don't really need Jordan canonical form. If $rho(A) ge 1$, $A$ has an eigenvalue $lambda$ with $|lambda| ge 1$. That eigenvalue has an eigenvector $v$. Then $A^n v = lambda^n v$, so $|A^n v| = |lambda|^n |v| ge |v|$ does not go to $0$ as $n to infty$, which is impossible if $A^n to 0$.






          share|cite|improve this answer









          $endgroup$




















            2












            $begingroup$

            Hint



            $$A=PJP^-1 \
            J=beginbmatrix
            lambda_1 & * & 0 & 0 & 0 & ... & 0 \
            0& lambda_2 & * & 0 & 0 & ... & 0 \
            ...&...&...&...&....&....&....\
            0 & 0 & 0 & 0&0&...&lambda_n \
            endbmatrix$$

            where each $*$ is either $0$ or $1$.



            Prove by induction that
            $$J^m=beginbmatrix
            lambda_1^m & star & star & star & star & ... & star \
            0& lambda_2^m & star & star & star & ... & star \
            ...&...&...&...&....&....&....\
            0 & 0 & 0 & 0&0&...&lambda_n^m \
            endbmatrix$$

            where the $star$s represent numbers, that is $J^m$ is an upper triangular matrix
            with the $m$^th powers of the eigenvalues on the diagonal.



            Note The above claim for $J^m$ is not fully using that $J$ is a Jordan cannonical form. It only uses that $J$ is upper triangular.






            share|cite|improve this answer









            $endgroup$












            • $begingroup$
              So, $A^m = PJ^mP^-1$. If I can show what you're asking by induction, would the limit of $J^m = 0$? I'm sure it is because the diagonal entries are less than one, right?
              $endgroup$
              – mXdX
              1 hour ago










            • $begingroup$
              @mXdX Well, that is the point. First $$lim_m J^m= lim_m P^-1 A^m P =0$$ Now, since $lim J^m=0$ you can deduce that the diagonal entries converge to zero, meaning $lambda_j^m to 0$. This implies that $|lambda_j |<1$
              $endgroup$
              – N. S.
              1 hour ago










            • $begingroup$
              I understand now. Thanks. So I would have to show, like you said, that the diagonal entries of $J^m$ are the $m$th powers of the eigenvalues.
              $endgroup$
              – mXdX
              58 mins ago











            Your Answer








            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3189376%2fproof-involving-the-spectral-radius-and-the-jordan-canonical-form%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            5












            $begingroup$

            You don't really need Jordan canonical form. If $rho(A) ge 1$, $A$ has an eigenvalue $lambda$ with $|lambda| ge 1$. That eigenvalue has an eigenvector $v$. Then $A^n v = lambda^n v$, so $|A^n v| = |lambda|^n |v| ge |v|$ does not go to $0$ as $n to infty$, which is impossible if $A^n to 0$.






            share|cite|improve this answer









            $endgroup$

















              5












              $begingroup$

              You don't really need Jordan canonical form. If $rho(A) ge 1$, $A$ has an eigenvalue $lambda$ with $|lambda| ge 1$. That eigenvalue has an eigenvector $v$. Then $A^n v = lambda^n v$, so $|A^n v| = |lambda|^n |v| ge |v|$ does not go to $0$ as $n to infty$, which is impossible if $A^n to 0$.






              share|cite|improve this answer









              $endgroup$















                5












                5








                5





                $begingroup$

                You don't really need Jordan canonical form. If $rho(A) ge 1$, $A$ has an eigenvalue $lambda$ with $|lambda| ge 1$. That eigenvalue has an eigenvector $v$. Then $A^n v = lambda^n v$, so $|A^n v| = |lambda|^n |v| ge |v|$ does not go to $0$ as $n to infty$, which is impossible if $A^n to 0$.






                share|cite|improve this answer









                $endgroup$



                You don't really need Jordan canonical form. If $rho(A) ge 1$, $A$ has an eigenvalue $lambda$ with $|lambda| ge 1$. That eigenvalue has an eigenvector $v$. Then $A^n v = lambda^n v$, so $|A^n v| = |lambda|^n |v| ge |v|$ does not go to $0$ as $n to infty$, which is impossible if $A^n to 0$.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 1 hour ago









                Robert IsraelRobert Israel

                332k23221478




                332k23221478





















                    2












                    $begingroup$

                    Hint



                    $$A=PJP^-1 \
                    J=beginbmatrix
                    lambda_1 & * & 0 & 0 & 0 & ... & 0 \
                    0& lambda_2 & * & 0 & 0 & ... & 0 \
                    ...&...&...&...&....&....&....\
                    0 & 0 & 0 & 0&0&...&lambda_n \
                    endbmatrix$$

                    where each $*$ is either $0$ or $1$.



                    Prove by induction that
                    $$J^m=beginbmatrix
                    lambda_1^m & star & star & star & star & ... & star \
                    0& lambda_2^m & star & star & star & ... & star \
                    ...&...&...&...&....&....&....\
                    0 & 0 & 0 & 0&0&...&lambda_n^m \
                    endbmatrix$$

                    where the $star$s represent numbers, that is $J^m$ is an upper triangular matrix
                    with the $m$^th powers of the eigenvalues on the diagonal.



                    Note The above claim for $J^m$ is not fully using that $J$ is a Jordan cannonical form. It only uses that $J$ is upper triangular.






                    share|cite|improve this answer









                    $endgroup$












                    • $begingroup$
                      So, $A^m = PJ^mP^-1$. If I can show what you're asking by induction, would the limit of $J^m = 0$? I'm sure it is because the diagonal entries are less than one, right?
                      $endgroup$
                      – mXdX
                      1 hour ago










                    • $begingroup$
                      @mXdX Well, that is the point. First $$lim_m J^m= lim_m P^-1 A^m P =0$$ Now, since $lim J^m=0$ you can deduce that the diagonal entries converge to zero, meaning $lambda_j^m to 0$. This implies that $|lambda_j |<1$
                      $endgroup$
                      – N. S.
                      1 hour ago










                    • $begingroup$
                      I understand now. Thanks. So I would have to show, like you said, that the diagonal entries of $J^m$ are the $m$th powers of the eigenvalues.
                      $endgroup$
                      – mXdX
                      58 mins ago















                    2












                    $begingroup$

                    Hint



                    $$A=PJP^-1 \
                    J=beginbmatrix
                    lambda_1 & * & 0 & 0 & 0 & ... & 0 \
                    0& lambda_2 & * & 0 & 0 & ... & 0 \
                    ...&...&...&...&....&....&....\
                    0 & 0 & 0 & 0&0&...&lambda_n \
                    endbmatrix$$

                    where each $*$ is either $0$ or $1$.



                    Prove by induction that
                    $$J^m=beginbmatrix
                    lambda_1^m & star & star & star & star & ... & star \
                    0& lambda_2^m & star & star & star & ... & star \
                    ...&...&...&...&....&....&....\
                    0 & 0 & 0 & 0&0&...&lambda_n^m \
                    endbmatrix$$

                    where the $star$s represent numbers, that is $J^m$ is an upper triangular matrix
                    with the $m$^th powers of the eigenvalues on the diagonal.



                    Note The above claim for $J^m$ is not fully using that $J$ is a Jordan cannonical form. It only uses that $J$ is upper triangular.






                    share|cite|improve this answer









                    $endgroup$












                    • $begingroup$
                      So, $A^m = PJ^mP^-1$. If I can show what you're asking by induction, would the limit of $J^m = 0$? I'm sure it is because the diagonal entries are less than one, right?
                      $endgroup$
                      – mXdX
                      1 hour ago










                    • $begingroup$
                      @mXdX Well, that is the point. First $$lim_m J^m= lim_m P^-1 A^m P =0$$ Now, since $lim J^m=0$ you can deduce that the diagonal entries converge to zero, meaning $lambda_j^m to 0$. This implies that $|lambda_j |<1$
                      $endgroup$
                      – N. S.
                      1 hour ago










                    • $begingroup$
                      I understand now. Thanks. So I would have to show, like you said, that the diagonal entries of $J^m$ are the $m$th powers of the eigenvalues.
                      $endgroup$
                      – mXdX
                      58 mins ago













                    2












                    2








                    2





                    $begingroup$

                    Hint



                    $$A=PJP^-1 \
                    J=beginbmatrix
                    lambda_1 & * & 0 & 0 & 0 & ... & 0 \
                    0& lambda_2 & * & 0 & 0 & ... & 0 \
                    ...&...&...&...&....&....&....\
                    0 & 0 & 0 & 0&0&...&lambda_n \
                    endbmatrix$$

                    where each $*$ is either $0$ or $1$.



                    Prove by induction that
                    $$J^m=beginbmatrix
                    lambda_1^m & star & star & star & star & ... & star \
                    0& lambda_2^m & star & star & star & ... & star \
                    ...&...&...&...&....&....&....\
                    0 & 0 & 0 & 0&0&...&lambda_n^m \
                    endbmatrix$$

                    where the $star$s represent numbers, that is $J^m$ is an upper triangular matrix
                    with the $m$^th powers of the eigenvalues on the diagonal.



                    Note The above claim for $J^m$ is not fully using that $J$ is a Jordan cannonical form. It only uses that $J$ is upper triangular.






                    share|cite|improve this answer









                    $endgroup$



                    Hint



                    $$A=PJP^-1 \
                    J=beginbmatrix
                    lambda_1 & * & 0 & 0 & 0 & ... & 0 \
                    0& lambda_2 & * & 0 & 0 & ... & 0 \
                    ...&...&...&...&....&....&....\
                    0 & 0 & 0 & 0&0&...&lambda_n \
                    endbmatrix$$

                    where each $*$ is either $0$ or $1$.



                    Prove by induction that
                    $$J^m=beginbmatrix
                    lambda_1^m & star & star & star & star & ... & star \
                    0& lambda_2^m & star & star & star & ... & star \
                    ...&...&...&...&....&....&....\
                    0 & 0 & 0 & 0&0&...&lambda_n^m \
                    endbmatrix$$

                    where the $star$s represent numbers, that is $J^m$ is an upper triangular matrix
                    with the $m$^th powers of the eigenvalues on the diagonal.



                    Note The above claim for $J^m$ is not fully using that $J$ is a Jordan cannonical form. It only uses that $J$ is upper triangular.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered 1 hour ago









                    N. S.N. S.

                    105k7115210




                    105k7115210











                    • $begingroup$
                      So, $A^m = PJ^mP^-1$. If I can show what you're asking by induction, would the limit of $J^m = 0$? I'm sure it is because the diagonal entries are less than one, right?
                      $endgroup$
                      – mXdX
                      1 hour ago










                    • $begingroup$
                      @mXdX Well, that is the point. First $$lim_m J^m= lim_m P^-1 A^m P =0$$ Now, since $lim J^m=0$ you can deduce that the diagonal entries converge to zero, meaning $lambda_j^m to 0$. This implies that $|lambda_j |<1$
                      $endgroup$
                      – N. S.
                      1 hour ago










                    • $begingroup$
                      I understand now. Thanks. So I would have to show, like you said, that the diagonal entries of $J^m$ are the $m$th powers of the eigenvalues.
                      $endgroup$
                      – mXdX
                      58 mins ago
















                    • $begingroup$
                      So, $A^m = PJ^mP^-1$. If I can show what you're asking by induction, would the limit of $J^m = 0$? I'm sure it is because the diagonal entries are less than one, right?
                      $endgroup$
                      – mXdX
                      1 hour ago










                    • $begingroup$
                      @mXdX Well, that is the point. First $$lim_m J^m= lim_m P^-1 A^m P =0$$ Now, since $lim J^m=0$ you can deduce that the diagonal entries converge to zero, meaning $lambda_j^m to 0$. This implies that $|lambda_j |<1$
                      $endgroup$
                      – N. S.
                      1 hour ago










                    • $begingroup$
                      I understand now. Thanks. So I would have to show, like you said, that the diagonal entries of $J^m$ are the $m$th powers of the eigenvalues.
                      $endgroup$
                      – mXdX
                      58 mins ago















                    $begingroup$
                    So, $A^m = PJ^mP^-1$. If I can show what you're asking by induction, would the limit of $J^m = 0$? I'm sure it is because the diagonal entries are less than one, right?
                    $endgroup$
                    – mXdX
                    1 hour ago




                    $begingroup$
                    So, $A^m = PJ^mP^-1$. If I can show what you're asking by induction, would the limit of $J^m = 0$? I'm sure it is because the diagonal entries are less than one, right?
                    $endgroup$
                    – mXdX
                    1 hour ago












                    $begingroup$
                    @mXdX Well, that is the point. First $$lim_m J^m= lim_m P^-1 A^m P =0$$ Now, since $lim J^m=0$ you can deduce that the diagonal entries converge to zero, meaning $lambda_j^m to 0$. This implies that $|lambda_j |<1$
                    $endgroup$
                    – N. S.
                    1 hour ago




                    $begingroup$
                    @mXdX Well, that is the point. First $$lim_m J^m= lim_m P^-1 A^m P =0$$ Now, since $lim J^m=0$ you can deduce that the diagonal entries converge to zero, meaning $lambda_j^m to 0$. This implies that $|lambda_j |<1$
                    $endgroup$
                    – N. S.
                    1 hour ago












                    $begingroup$
                    I understand now. Thanks. So I would have to show, like you said, that the diagonal entries of $J^m$ are the $m$th powers of the eigenvalues.
                    $endgroup$
                    – mXdX
                    58 mins ago




                    $begingroup$
                    I understand now. Thanks. So I would have to show, like you said, that the diagonal entries of $J^m$ are the $m$th powers of the eigenvalues.
                    $endgroup$
                    – mXdX
                    58 mins ago

















                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3189376%2fproof-involving-the-spectral-radius-and-the-jordan-canonical-form%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    名間水力發電廠 目录 沿革 設施 鄰近設施 註釋 外部連結 导航菜单23°50′10″N 120°42′41″E / 23.83611°N 120.71139°E / 23.83611; 120.7113923°50′10″N 120°42′41″E / 23.83611°N 120.71139°E / 23.83611; 120.71139計畫概要原始内容臺灣第一座BOT 模式開發的水力發電廠-名間水力電廠名間水力發電廠 水利署首件BOT案原始内容《小檔案》名間電廠 首座BOT水力發電廠原始内容名間電廠BOT - 經濟部水利署中區水資源局

                    Prove that NP is closed under karp reduction?Space(n) not closed under Karp reductions - what about NTime(n)?Class P is closed under rotation?Prove or disprove that $NL$ is closed under polynomial many-one reductions$mathbfNC_2$ is closed under log-space reductionOn Karp reductionwhen can I know if a class (complexity) is closed under reduction (cook/karp)Check if class $PSPACE$ is closed under polyonomially space reductionIs NPSPACE also closed under polynomial-time reduction and under log-space reduction?Prove PSPACE is closed under complement?Prove PSPACE is closed under union?

                    Is my guitar’s action too high? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Strings too stiff on a recently purchased acoustic guitar | Cort AD880CEIs the action of my guitar really high?Μy little finger is too weak to play guitarWith guitar, how long should I give my fingers to strengthen / callous?When playing a fret the guitar sounds mutedPlaying (Barre) chords up the guitar neckI think my guitar strings are wound too tight and I can't play barre chordsF barre chord on an SG guitarHow to find to the right strings of a barre chord by feel?High action on higher fret on my steel acoustic guitar