Scipy basinhopping custom step update and constrained loopingNumPy Scipy optimizationOptimize Scipy Sparse Matrix Factorization code for SGDSciPy sparse: optimize computation on non-zero elements of a sparse matrix (for tf-idf)Resource-constrained project schedulingChanging algorithm to avoid looping with iterrowsCleaning up and reformatting imported data in an Excel sheetPython Cartesian Product in a constrained dictonaryLooping through cells and deleting columnRoot finding and integrationMinimization problem solving and its step limits
GFCI outlets - can they be repaired? Are they really needed at the end of a circuit?
Assassin's bullet with mercury
Why doesn't using multiple commands with a || or && conditional work?
Ambiguity in the definition of entropy
Alternative to sending password over mail?
Could the museum Saturn V's be refitted for one more flight?
Can the Meissner effect explain very large floating structures?
How dangerous is XSS?
How writing a dominant 7 sus4 chord in RNA ( Vsus7 chord in the 1st inversion)
Should I cover my bicycle overnight while bikepacking?
Personal Teleportation: From Rags to Riches
Why can't we play rap on piano?
What is the most common color to indicate the input-field is disabled?
What killed these X2 caps?
What exploit Are these user agents trying to use?
Is it logically or scientifically possible to artificially send energy to the body?
Forgetting the musical notes while performing in concert
Can my sorcerer use a spellbook only to collect spells and scribe scrolls, not cast?
How to prevent "they're falling in love" trope
Im going to France and my passport expires June 19th
Bullying boss launched a smear campaign and made me unemployable
Why didn't Miles's spider sense work before?
How can I deal with my CEO asking me to hire someone with a higher salary than me, a co-founder?
Would Slavery Reparations be considered Bills of Attainder and hence Illegal?
Scipy basinhopping custom step update and constrained looping
NumPy Scipy optimizationOptimize Scipy Sparse Matrix Factorization code for SGDSciPy sparse: optimize computation on non-zero elements of a sparse matrix (for tf-idf)Resource-constrained project schedulingChanging algorithm to avoid looping with iterrowsCleaning up and reformatting imported data in an Excel sheetPython Cartesian Product in a constrained dictonaryLooping through cells and deleting columnRoot finding and integrationMinimization problem solving and its step limits
$begingroup$
I am searching for the global minimum of a certain function and trying to use its gradient (here same as Jacobin) to guide the step counter. However, my x
is fix and so is my gradient. I am also trying to retrieve the fastest way possible the first x
for which f(x)<1
, therefore I am using a constraint.
- How can I update the
x
input and the Jacobin ? - My
f(x)<1
is not being very effective, so is there any alternative to achieve my requirement?
This is my code (more or less):
class MyBounds(object):
def __init__(self, xmax=[2*np.pi, 2*np.pi, 2*np.pi, 2*np.pi, 1.2, 1.2, 1.2, 1.2], xmin=[0, 0, 0, 0, 0, 0, 0, 0] ):
self.xmax = np.array(xmax)
self.xmin = np.array(xmin)
def __call__(self, **kwargs):
x = kwargs["x_new"]
tmax = bool(np.all(x <= self.xmax))
tmin = bool(np.all(x >= self.xmin))
return tmax and tmin
class MyTakeStep(object):
def __init__(self, stepsize=1):
self.stepsize = stepsize
def compute_step(self, jacobi_matrix, x, i):
if jacobi_matrix[i] < 0: r = np.random.uniform(0, 2*np.pi-x[i])
elif jacobi_matrix[i] > 0: r = np.random.uniform(0-x[i], 0)
else : r = 0
return r
def __call__(self, x):
print("ENTERING fROM CALL")
print("THIS IS X: ", x)
jacobi_matrix = jacobian(x)
print("x : ", x)
print("jacobi: ", jacobi_matrix)
x[0] += self.compute_step(jacobi_matrix, x, 0)
x[1] += self.compute_step(jacobi_matrix, x, 1)
x[2] += self.compute_step(jacobi_matrix, x, 2)
x[3] += self.compute_step(jacobi_matrix, x, 3)
x[4] += self.compute_step(jacobi_matrix, x, 4)
x[5] += self.compute_step(jacobi_matrix, x, 5)
x[6] += self.compute_step(jacobi_matrix, x, 6)
x[7] += self.compute_step(jacobi_matrix, x, 7)
print("newx : ", x)
return x
def f(x):
# objective function componenets
result = g1
result += g2
result += g3
return result
def jacobian(x):
print("input_list in Jacobi: ", x)
# define full derivatives
dG_dphi = dg1_dphi + dg2_dphi + dg3_dphi
dG_dr = dg1_dr + dg2_dr + dg3_dr
gradient = np.hstack((dG_dphi, dG_dr))
print("G: ", gradient.shape, gradient, " n")
return gradient
def callback(x, f, accept):
print("x: %65s | f: %5s | accept: %5s" % (str([round(e,3) for e in x]), str(round(f, 3)), accept))
def hopping_solver(min_f, min_x, input_excitation):
# define bounds
mybounds = MyBounds()
mytakestep = MyTakeStep()
comb = [deg2rad(phi) for phi in input_excitation[:4]] + input_excitation[4:]
print("comb: ", comb)
min_f = 10
tol = 0
cons = 'type':'ineq','fun': lambda x: 1-f(x)
k = "method":'Nelder-Mead', 'constraints': cons, 'jac': jacobian, 'tol': tol
optimal_c = optimize.basinhopping(f,
x0 = comb,
niter = 1000000,
T = 8,
stepsize = 1,
minimizer_kwargs = k,
take_step = mytakestep,
accept_test = mybounds,
callback = callback,
interval = 100000,
disp = True,
niter_success = None)
print(optimal_c)
min_x, min_f = optimal_c['x'], optimal_c['fun']
comb = min_x
sol = np.array(list([np.rad2deg(phi) for phi in list(optimal_c['x'][:4])]) + list(optimal_c['x'][4:]))
min_x = sol
return min_x, min_f
Any help is much appreciated, thank you in advance.
python performance scipy
$endgroup$
add a comment |
$begingroup$
I am searching for the global minimum of a certain function and trying to use its gradient (here same as Jacobin) to guide the step counter. However, my x
is fix and so is my gradient. I am also trying to retrieve the fastest way possible the first x
for which f(x)<1
, therefore I am using a constraint.
- How can I update the
x
input and the Jacobin ? - My
f(x)<1
is not being very effective, so is there any alternative to achieve my requirement?
This is my code (more or less):
class MyBounds(object):
def __init__(self, xmax=[2*np.pi, 2*np.pi, 2*np.pi, 2*np.pi, 1.2, 1.2, 1.2, 1.2], xmin=[0, 0, 0, 0, 0, 0, 0, 0] ):
self.xmax = np.array(xmax)
self.xmin = np.array(xmin)
def __call__(self, **kwargs):
x = kwargs["x_new"]
tmax = bool(np.all(x <= self.xmax))
tmin = bool(np.all(x >= self.xmin))
return tmax and tmin
class MyTakeStep(object):
def __init__(self, stepsize=1):
self.stepsize = stepsize
def compute_step(self, jacobi_matrix, x, i):
if jacobi_matrix[i] < 0: r = np.random.uniform(0, 2*np.pi-x[i])
elif jacobi_matrix[i] > 0: r = np.random.uniform(0-x[i], 0)
else : r = 0
return r
def __call__(self, x):
print("ENTERING fROM CALL")
print("THIS IS X: ", x)
jacobi_matrix = jacobian(x)
print("x : ", x)
print("jacobi: ", jacobi_matrix)
x[0] += self.compute_step(jacobi_matrix, x, 0)
x[1] += self.compute_step(jacobi_matrix, x, 1)
x[2] += self.compute_step(jacobi_matrix, x, 2)
x[3] += self.compute_step(jacobi_matrix, x, 3)
x[4] += self.compute_step(jacobi_matrix, x, 4)
x[5] += self.compute_step(jacobi_matrix, x, 5)
x[6] += self.compute_step(jacobi_matrix, x, 6)
x[7] += self.compute_step(jacobi_matrix, x, 7)
print("newx : ", x)
return x
def f(x):
# objective function componenets
result = g1
result += g2
result += g3
return result
def jacobian(x):
print("input_list in Jacobi: ", x)
# define full derivatives
dG_dphi = dg1_dphi + dg2_dphi + dg3_dphi
dG_dr = dg1_dr + dg2_dr + dg3_dr
gradient = np.hstack((dG_dphi, dG_dr))
print("G: ", gradient.shape, gradient, " n")
return gradient
def callback(x, f, accept):
print("x: %65s | f: %5s | accept: %5s" % (str([round(e,3) for e in x]), str(round(f, 3)), accept))
def hopping_solver(min_f, min_x, input_excitation):
# define bounds
mybounds = MyBounds()
mytakestep = MyTakeStep()
comb = [deg2rad(phi) for phi in input_excitation[:4]] + input_excitation[4:]
print("comb: ", comb)
min_f = 10
tol = 0
cons = 'type':'ineq','fun': lambda x: 1-f(x)
k = "method":'Nelder-Mead', 'constraints': cons, 'jac': jacobian, 'tol': tol
optimal_c = optimize.basinhopping(f,
x0 = comb,
niter = 1000000,
T = 8,
stepsize = 1,
minimizer_kwargs = k,
take_step = mytakestep,
accept_test = mybounds,
callback = callback,
interval = 100000,
disp = True,
niter_success = None)
print(optimal_c)
min_x, min_f = optimal_c['x'], optimal_c['fun']
comb = min_x
sol = np.array(list([np.rad2deg(phi) for phi in list(optimal_c['x'][:4])]) + list(optimal_c['x'][4:]))
min_x = sol
return min_x, min_f
Any help is much appreciated, thank you in advance.
python performance scipy
$endgroup$
add a comment |
$begingroup$
I am searching for the global minimum of a certain function and trying to use its gradient (here same as Jacobin) to guide the step counter. However, my x
is fix and so is my gradient. I am also trying to retrieve the fastest way possible the first x
for which f(x)<1
, therefore I am using a constraint.
- How can I update the
x
input and the Jacobin ? - My
f(x)<1
is not being very effective, so is there any alternative to achieve my requirement?
This is my code (more or less):
class MyBounds(object):
def __init__(self, xmax=[2*np.pi, 2*np.pi, 2*np.pi, 2*np.pi, 1.2, 1.2, 1.2, 1.2], xmin=[0, 0, 0, 0, 0, 0, 0, 0] ):
self.xmax = np.array(xmax)
self.xmin = np.array(xmin)
def __call__(self, **kwargs):
x = kwargs["x_new"]
tmax = bool(np.all(x <= self.xmax))
tmin = bool(np.all(x >= self.xmin))
return tmax and tmin
class MyTakeStep(object):
def __init__(self, stepsize=1):
self.stepsize = stepsize
def compute_step(self, jacobi_matrix, x, i):
if jacobi_matrix[i] < 0: r = np.random.uniform(0, 2*np.pi-x[i])
elif jacobi_matrix[i] > 0: r = np.random.uniform(0-x[i], 0)
else : r = 0
return r
def __call__(self, x):
print("ENTERING fROM CALL")
print("THIS IS X: ", x)
jacobi_matrix = jacobian(x)
print("x : ", x)
print("jacobi: ", jacobi_matrix)
x[0] += self.compute_step(jacobi_matrix, x, 0)
x[1] += self.compute_step(jacobi_matrix, x, 1)
x[2] += self.compute_step(jacobi_matrix, x, 2)
x[3] += self.compute_step(jacobi_matrix, x, 3)
x[4] += self.compute_step(jacobi_matrix, x, 4)
x[5] += self.compute_step(jacobi_matrix, x, 5)
x[6] += self.compute_step(jacobi_matrix, x, 6)
x[7] += self.compute_step(jacobi_matrix, x, 7)
print("newx : ", x)
return x
def f(x):
# objective function componenets
result = g1
result += g2
result += g3
return result
def jacobian(x):
print("input_list in Jacobi: ", x)
# define full derivatives
dG_dphi = dg1_dphi + dg2_dphi + dg3_dphi
dG_dr = dg1_dr + dg2_dr + dg3_dr
gradient = np.hstack((dG_dphi, dG_dr))
print("G: ", gradient.shape, gradient, " n")
return gradient
def callback(x, f, accept):
print("x: %65s | f: %5s | accept: %5s" % (str([round(e,3) for e in x]), str(round(f, 3)), accept))
def hopping_solver(min_f, min_x, input_excitation):
# define bounds
mybounds = MyBounds()
mytakestep = MyTakeStep()
comb = [deg2rad(phi) for phi in input_excitation[:4]] + input_excitation[4:]
print("comb: ", comb)
min_f = 10
tol = 0
cons = 'type':'ineq','fun': lambda x: 1-f(x)
k = "method":'Nelder-Mead', 'constraints': cons, 'jac': jacobian, 'tol': tol
optimal_c = optimize.basinhopping(f,
x0 = comb,
niter = 1000000,
T = 8,
stepsize = 1,
minimizer_kwargs = k,
take_step = mytakestep,
accept_test = mybounds,
callback = callback,
interval = 100000,
disp = True,
niter_success = None)
print(optimal_c)
min_x, min_f = optimal_c['x'], optimal_c['fun']
comb = min_x
sol = np.array(list([np.rad2deg(phi) for phi in list(optimal_c['x'][:4])]) + list(optimal_c['x'][4:]))
min_x = sol
return min_x, min_f
Any help is much appreciated, thank you in advance.
python performance scipy
$endgroup$
I am searching for the global minimum of a certain function and trying to use its gradient (here same as Jacobin) to guide the step counter. However, my x
is fix and so is my gradient. I am also trying to retrieve the fastest way possible the first x
for which f(x)<1
, therefore I am using a constraint.
- How can I update the
x
input and the Jacobin ? - My
f(x)<1
is not being very effective, so is there any alternative to achieve my requirement?
This is my code (more or less):
class MyBounds(object):
def __init__(self, xmax=[2*np.pi, 2*np.pi, 2*np.pi, 2*np.pi, 1.2, 1.2, 1.2, 1.2], xmin=[0, 0, 0, 0, 0, 0, 0, 0] ):
self.xmax = np.array(xmax)
self.xmin = np.array(xmin)
def __call__(self, **kwargs):
x = kwargs["x_new"]
tmax = bool(np.all(x <= self.xmax))
tmin = bool(np.all(x >= self.xmin))
return tmax and tmin
class MyTakeStep(object):
def __init__(self, stepsize=1):
self.stepsize = stepsize
def compute_step(self, jacobi_matrix, x, i):
if jacobi_matrix[i] < 0: r = np.random.uniform(0, 2*np.pi-x[i])
elif jacobi_matrix[i] > 0: r = np.random.uniform(0-x[i], 0)
else : r = 0
return r
def __call__(self, x):
print("ENTERING fROM CALL")
print("THIS IS X: ", x)
jacobi_matrix = jacobian(x)
print("x : ", x)
print("jacobi: ", jacobi_matrix)
x[0] += self.compute_step(jacobi_matrix, x, 0)
x[1] += self.compute_step(jacobi_matrix, x, 1)
x[2] += self.compute_step(jacobi_matrix, x, 2)
x[3] += self.compute_step(jacobi_matrix, x, 3)
x[4] += self.compute_step(jacobi_matrix, x, 4)
x[5] += self.compute_step(jacobi_matrix, x, 5)
x[6] += self.compute_step(jacobi_matrix, x, 6)
x[7] += self.compute_step(jacobi_matrix, x, 7)
print("newx : ", x)
return x
def f(x):
# objective function componenets
result = g1
result += g2
result += g3
return result
def jacobian(x):
print("input_list in Jacobi: ", x)
# define full derivatives
dG_dphi = dg1_dphi + dg2_dphi + dg3_dphi
dG_dr = dg1_dr + dg2_dr + dg3_dr
gradient = np.hstack((dG_dphi, dG_dr))
print("G: ", gradient.shape, gradient, " n")
return gradient
def callback(x, f, accept):
print("x: %65s | f: %5s | accept: %5s" % (str([round(e,3) for e in x]), str(round(f, 3)), accept))
def hopping_solver(min_f, min_x, input_excitation):
# define bounds
mybounds = MyBounds()
mytakestep = MyTakeStep()
comb = [deg2rad(phi) for phi in input_excitation[:4]] + input_excitation[4:]
print("comb: ", comb)
min_f = 10
tol = 0
cons = 'type':'ineq','fun': lambda x: 1-f(x)
k = "method":'Nelder-Mead', 'constraints': cons, 'jac': jacobian, 'tol': tol
optimal_c = optimize.basinhopping(f,
x0 = comb,
niter = 1000000,
T = 8,
stepsize = 1,
minimizer_kwargs = k,
take_step = mytakestep,
accept_test = mybounds,
callback = callback,
interval = 100000,
disp = True,
niter_success = None)
print(optimal_c)
min_x, min_f = optimal_c['x'], optimal_c['fun']
comb = min_x
sol = np.array(list([np.rad2deg(phi) for phi in list(optimal_c['x'][:4])]) + list(optimal_c['x'][4:]))
min_x = sol
return min_x, min_f
Any help is much appreciated, thank you in advance.
python performance scipy
python performance scipy
asked 5 mins ago
SuperKogitoSuperKogito
1264
1264
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
);
);
, "mathjax-editing");
StackExchange.ifUsing("editor", function ()
StackExchange.using("externalEditor", function ()
StackExchange.using("snippets", function ()
StackExchange.snippets.init();
);
);
, "code-snippets");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "196"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f216827%2fscipy-basinhopping-custom-step-update-and-constrained-looping%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Code Review Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f216827%2fscipy-basinhopping-custom-step-update-and-constrained-looping%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown