Why does this cyclic subgroup have only 4 subgroups?What does it mean to have no proper non-trivial subgroupCyclic subgroup of a cyclic groupProof on Cyclic Subgroup GenerationIf $G$ has only 2 non-trivial proper subgroups H, N, then H, N are cyclic subgroup of $G$.Number of cyclic subgroups of the alternating group $A_8$All groups of order 10 have a proper normal subgroupHow many subgroups of order 17 does $S_17$ have?Why do Sylow $3$-subgroups intersect only in the identity?Group with proper subgroups infinite cyclicHow many noncyclic submodules with $9$ elements does $V$ have?

Forgetting the musical notes while performing in concert

Forming a German sentence with/without the verb at the end

Is it inappropriate for a student to attend their mentor's dissertation defense?

Detention in 1997

How do I gain back my faith in my PhD degree?

How dangerous is XSS?

ssTTsSTtRrriinInnnnNNNIiinngg

What does the expression "A Mann!" means

Should I cover my bicycle overnight while bikepacking?

Can we compute the area of a quadrilateral with one right angle when we only know the lengths of any three sides?

Arrow those variables!

What's the in-universe reasoning behind sorcerers needing material components?

In 'Revenger,' what does 'cove' come from?

Why does this cyclic subgroup have only 4 subgroups?

Can a virus destroy the BIOS of a modern computer?

Assassin's bullet with mercury

Why didn't Miles's spider sense work before?

What method can I use to design a dungeon difficult enough that the PCs can't make it through without killing them?

Valid term from quadratic sequence?

How can I deal with my CEO asking me to hire someone with a higher salary than me, a co-founder?

Why was the shrinking from 8″ made only to 5.25″ and not smaller (4″ or less)?

What about the virus in 12 Monkeys?

How to tell a function to use the default argument values?

How to prevent "they're falling in love" trope



Why does this cyclic subgroup have only 4 subgroups?


What does it mean to have no proper non-trivial subgroupCyclic subgroup of a cyclic groupProof on Cyclic Subgroup GenerationIf $G$ has only 2 non-trivial proper subgroups H, N, then H, N are cyclic subgroup of $G$.Number of cyclic subgroups of the alternating group $A_8$All groups of order 10 have a proper normal subgroupHow many subgroups of order 17 does $S_17$ have?Why do Sylow $3$-subgroups intersect only in the identity?Group with proper subgroups infinite cyclicHow many noncyclic submodules with $9$ elements does $V$ have?













1












$begingroup$


Let the cyclic group have 6 elements and be denoted as $G = 1, a, a^2, a^3, a^4, a^5$ where $a^6 = 1$.



Besides the trivial subgroup 1 and the entire subgroup G, my textbook says there are only two other subgroups, $1, a^2, a^4$ and $1, a^3$.



Why isnt $1, a^5$ a subgroup? Is it because $a^5$ has no inverse? If so, then what is the inverse of $a^3$?




There should be an element, $b$ such that $a^3 cdot b = 1$. The only reasoning I can think of is that if $b = a^3$, then $a^3 cdot a^3 = a^6 = 1$ only because $a^6 =1$ was explicitly stated.



If $a^5 cdot b = 1$ is true, then $b$ would have to be $a^-5$ or $a^10$, where it is explicitly stated that $a^10 = 1$ as well.



Is my thought process correct?










share|cite|improve this question











$endgroup$











  • $begingroup$
    The inverse of $a^3$ is itself ($a^3$). The inverse of $a^5$ is $a$.
    $endgroup$
    – Minus One-Twelfth
    2 hours ago











  • $begingroup$
    why? Could you help me understand how you got to that conclusion?
    $endgroup$
    – Evan Kim
    2 hours ago






  • 2




    $begingroup$
    $1,a^5$ is not a subgroup because it is not closed; it does not contain $a^5a^5=a^10=a^4$
    $endgroup$
    – J. W. Tanner
    2 hours ago











  • $begingroup$
    The inverse of $a^5$ is $a$ because $a^5cdot a = 1$ (since $a^5cdot a = a^6$, which we are told is $1$).
    $endgroup$
    – Minus One-Twelfth
    56 mins ago















1












$begingroup$


Let the cyclic group have 6 elements and be denoted as $G = 1, a, a^2, a^3, a^4, a^5$ where $a^6 = 1$.



Besides the trivial subgroup 1 and the entire subgroup G, my textbook says there are only two other subgroups, $1, a^2, a^4$ and $1, a^3$.



Why isnt $1, a^5$ a subgroup? Is it because $a^5$ has no inverse? If so, then what is the inverse of $a^3$?




There should be an element, $b$ such that $a^3 cdot b = 1$. The only reasoning I can think of is that if $b = a^3$, then $a^3 cdot a^3 = a^6 = 1$ only because $a^6 =1$ was explicitly stated.



If $a^5 cdot b = 1$ is true, then $b$ would have to be $a^-5$ or $a^10$, where it is explicitly stated that $a^10 = 1$ as well.



Is my thought process correct?










share|cite|improve this question











$endgroup$











  • $begingroup$
    The inverse of $a^3$ is itself ($a^3$). The inverse of $a^5$ is $a$.
    $endgroup$
    – Minus One-Twelfth
    2 hours ago











  • $begingroup$
    why? Could you help me understand how you got to that conclusion?
    $endgroup$
    – Evan Kim
    2 hours ago






  • 2




    $begingroup$
    $1,a^5$ is not a subgroup because it is not closed; it does not contain $a^5a^5=a^10=a^4$
    $endgroup$
    – J. W. Tanner
    2 hours ago











  • $begingroup$
    The inverse of $a^5$ is $a$ because $a^5cdot a = 1$ (since $a^5cdot a = a^6$, which we are told is $1$).
    $endgroup$
    – Minus One-Twelfth
    56 mins ago













1












1








1





$begingroup$


Let the cyclic group have 6 elements and be denoted as $G = 1, a, a^2, a^3, a^4, a^5$ where $a^6 = 1$.



Besides the trivial subgroup 1 and the entire subgroup G, my textbook says there are only two other subgroups, $1, a^2, a^4$ and $1, a^3$.



Why isnt $1, a^5$ a subgroup? Is it because $a^5$ has no inverse? If so, then what is the inverse of $a^3$?




There should be an element, $b$ such that $a^3 cdot b = 1$. The only reasoning I can think of is that if $b = a^3$, then $a^3 cdot a^3 = a^6 = 1$ only because $a^6 =1$ was explicitly stated.



If $a^5 cdot b = 1$ is true, then $b$ would have to be $a^-5$ or $a^10$, where it is explicitly stated that $a^10 = 1$ as well.



Is my thought process correct?










share|cite|improve this question











$endgroup$




Let the cyclic group have 6 elements and be denoted as $G = 1, a, a^2, a^3, a^4, a^5$ where $a^6 = 1$.



Besides the trivial subgroup 1 and the entire subgroup G, my textbook says there are only two other subgroups, $1, a^2, a^4$ and $1, a^3$.



Why isnt $1, a^5$ a subgroup? Is it because $a^5$ has no inverse? If so, then what is the inverse of $a^3$?




There should be an element, $b$ such that $a^3 cdot b = 1$. The only reasoning I can think of is that if $b = a^3$, then $a^3 cdot a^3 = a^6 = 1$ only because $a^6 =1$ was explicitly stated.



If $a^5 cdot b = 1$ is true, then $b$ would have to be $a^-5$ or $a^10$, where it is explicitly stated that $a^10 = 1$ as well.



Is my thought process correct?







abstract-algebra group-theory






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 2 hours ago









J. W. Tanner

4,3651320




4,3651320










asked 2 hours ago









Evan KimEvan Kim

66319




66319











  • $begingroup$
    The inverse of $a^3$ is itself ($a^3$). The inverse of $a^5$ is $a$.
    $endgroup$
    – Minus One-Twelfth
    2 hours ago











  • $begingroup$
    why? Could you help me understand how you got to that conclusion?
    $endgroup$
    – Evan Kim
    2 hours ago






  • 2




    $begingroup$
    $1,a^5$ is not a subgroup because it is not closed; it does not contain $a^5a^5=a^10=a^4$
    $endgroup$
    – J. W. Tanner
    2 hours ago











  • $begingroup$
    The inverse of $a^5$ is $a$ because $a^5cdot a = 1$ (since $a^5cdot a = a^6$, which we are told is $1$).
    $endgroup$
    – Minus One-Twelfth
    56 mins ago
















  • $begingroup$
    The inverse of $a^3$ is itself ($a^3$). The inverse of $a^5$ is $a$.
    $endgroup$
    – Minus One-Twelfth
    2 hours ago











  • $begingroup$
    why? Could you help me understand how you got to that conclusion?
    $endgroup$
    – Evan Kim
    2 hours ago






  • 2




    $begingroup$
    $1,a^5$ is not a subgroup because it is not closed; it does not contain $a^5a^5=a^10=a^4$
    $endgroup$
    – J. W. Tanner
    2 hours ago











  • $begingroup$
    The inverse of $a^5$ is $a$ because $a^5cdot a = 1$ (since $a^5cdot a = a^6$, which we are told is $1$).
    $endgroup$
    – Minus One-Twelfth
    56 mins ago















$begingroup$
The inverse of $a^3$ is itself ($a^3$). The inverse of $a^5$ is $a$.
$endgroup$
– Minus One-Twelfth
2 hours ago





$begingroup$
The inverse of $a^3$ is itself ($a^3$). The inverse of $a^5$ is $a$.
$endgroup$
– Minus One-Twelfth
2 hours ago













$begingroup$
why? Could you help me understand how you got to that conclusion?
$endgroup$
– Evan Kim
2 hours ago




$begingroup$
why? Could you help me understand how you got to that conclusion?
$endgroup$
– Evan Kim
2 hours ago




2




2




$begingroup$
$1,a^5$ is not a subgroup because it is not closed; it does not contain $a^5a^5=a^10=a^4$
$endgroup$
– J. W. Tanner
2 hours ago





$begingroup$
$1,a^5$ is not a subgroup because it is not closed; it does not contain $a^5a^5=a^10=a^4$
$endgroup$
– J. W. Tanner
2 hours ago













$begingroup$
The inverse of $a^5$ is $a$ because $a^5cdot a = 1$ (since $a^5cdot a = a^6$, which we are told is $1$).
$endgroup$
– Minus One-Twelfth
56 mins ago




$begingroup$
The inverse of $a^5$ is $a$ because $a^5cdot a = 1$ (since $a^5cdot a = a^6$, which we are told is $1$).
$endgroup$
– Minus One-Twelfth
56 mins ago










4 Answers
4






active

oldest

votes


















2












$begingroup$

$[1,a^5] $ is not a subgroup because $a^5cdot a^5=a^4$ which is not in the set $[1,a^5]$



But in a subgroup , with two elements $a,b$ , the product $ab$ must be in the subgroup as well.






share|cite|improve this answer









$endgroup$




















    2












    $begingroup$

    $lbrace 1, a^5 rbrace$ is not a subgroup because
    $$a^5 . a^5 = a^4$$
    is not an element of $lbrace 1, a^5 rbrace$. So $lbrace 1, a^5 rbrace$ is not stable for the intern law of the group.






    share|cite|improve this answer









    $endgroup$




















      1












      $begingroup$

      Since nobody said it I'll also add that we know from the Fundamental Theorem of Cyclic Groups that for a finite cyclic group of order $n$, every subgroup's order is a divisor of $n$, and there is exactly one subgroup for each divisor. So to find the number of cyclic groups for a group of order $n$, just count the divisors of $n$. Here there are $4$ divisors of $6$, and so these must be all the subgroups.



      It is also true that if $a$ is an element of order $n$ in a group and $k$ is a positive integer. Then $langle a^k rangle = langle a^gcd(n,k) rangle$. Where $langle a rangle$ denotes the group generated by $a$. Since $gcd(5,6) = 1$, we know that the group generated by $a^5$ is the same as the group generated by $a$.






      share|cite|improve this answer









      $endgroup$




















        0












        $begingroup$

        Hint: Prove that subgroups of cyclic groups are themselves cyclic. Then use Lagrange's Theorem.




        To address your misunderstanding: if $gin H$ for some $Hle G$, then all powers of $g$ are in $H$.






        share|cite|improve this answer









        $endgroup$












        • $begingroup$
          Why the downvote?
          $endgroup$
          – Shaun
          1 hour ago











        Your Answer





        StackExchange.ifUsing("editor", function ()
        return StackExchange.using("mathjaxEditing", function ()
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        );
        );
        , "mathjax-editing");

        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "69"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader:
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        ,
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );













        draft saved

        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3173761%2fwhy-does-this-cyclic-subgroup-have-only-4-subgroups%23new-answer', 'question_page');

        );

        Post as a guest















        Required, but never shown

























        4 Answers
        4






        active

        oldest

        votes








        4 Answers
        4






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        2












        $begingroup$

        $[1,a^5] $ is not a subgroup because $a^5cdot a^5=a^4$ which is not in the set $[1,a^5]$



        But in a subgroup , with two elements $a,b$ , the product $ab$ must be in the subgroup as well.






        share|cite|improve this answer









        $endgroup$

















          2












          $begingroup$

          $[1,a^5] $ is not a subgroup because $a^5cdot a^5=a^4$ which is not in the set $[1,a^5]$



          But in a subgroup , with two elements $a,b$ , the product $ab$ must be in the subgroup as well.






          share|cite|improve this answer









          $endgroup$















            2












            2








            2





            $begingroup$

            $[1,a^5] $ is not a subgroup because $a^5cdot a^5=a^4$ which is not in the set $[1,a^5]$



            But in a subgroup , with two elements $a,b$ , the product $ab$ must be in the subgroup as well.






            share|cite|improve this answer









            $endgroup$



            $[1,a^5] $ is not a subgroup because $a^5cdot a^5=a^4$ which is not in the set $[1,a^5]$



            But in a subgroup , with two elements $a,b$ , the product $ab$ must be in the subgroup as well.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered 2 hours ago









            PeterPeter

            48.9k1240137




            48.9k1240137





















                2












                $begingroup$

                $lbrace 1, a^5 rbrace$ is not a subgroup because
                $$a^5 . a^5 = a^4$$
                is not an element of $lbrace 1, a^5 rbrace$. So $lbrace 1, a^5 rbrace$ is not stable for the intern law of the group.






                share|cite|improve this answer









                $endgroup$

















                  2












                  $begingroup$

                  $lbrace 1, a^5 rbrace$ is not a subgroup because
                  $$a^5 . a^5 = a^4$$
                  is not an element of $lbrace 1, a^5 rbrace$. So $lbrace 1, a^5 rbrace$ is not stable for the intern law of the group.






                  share|cite|improve this answer









                  $endgroup$















                    2












                    2








                    2





                    $begingroup$

                    $lbrace 1, a^5 rbrace$ is not a subgroup because
                    $$a^5 . a^5 = a^4$$
                    is not an element of $lbrace 1, a^5 rbrace$. So $lbrace 1, a^5 rbrace$ is not stable for the intern law of the group.






                    share|cite|improve this answer









                    $endgroup$



                    $lbrace 1, a^5 rbrace$ is not a subgroup because
                    $$a^5 . a^5 = a^4$$
                    is not an element of $lbrace 1, a^5 rbrace$. So $lbrace 1, a^5 rbrace$ is not stable for the intern law of the group.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered 2 hours ago









                    TheSilverDoeTheSilverDoe

                    5,157215




                    5,157215





















                        1












                        $begingroup$

                        Since nobody said it I'll also add that we know from the Fundamental Theorem of Cyclic Groups that for a finite cyclic group of order $n$, every subgroup's order is a divisor of $n$, and there is exactly one subgroup for each divisor. So to find the number of cyclic groups for a group of order $n$, just count the divisors of $n$. Here there are $4$ divisors of $6$, and so these must be all the subgroups.



                        It is also true that if $a$ is an element of order $n$ in a group and $k$ is a positive integer. Then $langle a^k rangle = langle a^gcd(n,k) rangle$. Where $langle a rangle$ denotes the group generated by $a$. Since $gcd(5,6) = 1$, we know that the group generated by $a^5$ is the same as the group generated by $a$.






                        share|cite|improve this answer









                        $endgroup$

















                          1












                          $begingroup$

                          Since nobody said it I'll also add that we know from the Fundamental Theorem of Cyclic Groups that for a finite cyclic group of order $n$, every subgroup's order is a divisor of $n$, and there is exactly one subgroup for each divisor. So to find the number of cyclic groups for a group of order $n$, just count the divisors of $n$. Here there are $4$ divisors of $6$, and so these must be all the subgroups.



                          It is also true that if $a$ is an element of order $n$ in a group and $k$ is a positive integer. Then $langle a^k rangle = langle a^gcd(n,k) rangle$. Where $langle a rangle$ denotes the group generated by $a$. Since $gcd(5,6) = 1$, we know that the group generated by $a^5$ is the same as the group generated by $a$.






                          share|cite|improve this answer









                          $endgroup$















                            1












                            1








                            1





                            $begingroup$

                            Since nobody said it I'll also add that we know from the Fundamental Theorem of Cyclic Groups that for a finite cyclic group of order $n$, every subgroup's order is a divisor of $n$, and there is exactly one subgroup for each divisor. So to find the number of cyclic groups for a group of order $n$, just count the divisors of $n$. Here there are $4$ divisors of $6$, and so these must be all the subgroups.



                            It is also true that if $a$ is an element of order $n$ in a group and $k$ is a positive integer. Then $langle a^k rangle = langle a^gcd(n,k) rangle$. Where $langle a rangle$ denotes the group generated by $a$. Since $gcd(5,6) = 1$, we know that the group generated by $a^5$ is the same as the group generated by $a$.






                            share|cite|improve this answer









                            $endgroup$



                            Since nobody said it I'll also add that we know from the Fundamental Theorem of Cyclic Groups that for a finite cyclic group of order $n$, every subgroup's order is a divisor of $n$, and there is exactly one subgroup for each divisor. So to find the number of cyclic groups for a group of order $n$, just count the divisors of $n$. Here there are $4$ divisors of $6$, and so these must be all the subgroups.



                            It is also true that if $a$ is an element of order $n$ in a group and $k$ is a positive integer. Then $langle a^k rangle = langle a^gcd(n,k) rangle$. Where $langle a rangle$ denotes the group generated by $a$. Since $gcd(5,6) = 1$, we know that the group generated by $a^5$ is the same as the group generated by $a$.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered 1 hour ago









                            Jack PfaffingerJack Pfaffinger

                            3841112




                            3841112





















                                0












                                $begingroup$

                                Hint: Prove that subgroups of cyclic groups are themselves cyclic. Then use Lagrange's Theorem.




                                To address your misunderstanding: if $gin H$ for some $Hle G$, then all powers of $g$ are in $H$.






                                share|cite|improve this answer









                                $endgroup$












                                • $begingroup$
                                  Why the downvote?
                                  $endgroup$
                                  – Shaun
                                  1 hour ago















                                0












                                $begingroup$

                                Hint: Prove that subgroups of cyclic groups are themselves cyclic. Then use Lagrange's Theorem.




                                To address your misunderstanding: if $gin H$ for some $Hle G$, then all powers of $g$ are in $H$.






                                share|cite|improve this answer









                                $endgroup$












                                • $begingroup$
                                  Why the downvote?
                                  $endgroup$
                                  – Shaun
                                  1 hour ago













                                0












                                0








                                0





                                $begingroup$

                                Hint: Prove that subgroups of cyclic groups are themselves cyclic. Then use Lagrange's Theorem.




                                To address your misunderstanding: if $gin H$ for some $Hle G$, then all powers of $g$ are in $H$.






                                share|cite|improve this answer









                                $endgroup$



                                Hint: Prove that subgroups of cyclic groups are themselves cyclic. Then use Lagrange's Theorem.




                                To address your misunderstanding: if $gin H$ for some $Hle G$, then all powers of $g$ are in $H$.







                                share|cite|improve this answer












                                share|cite|improve this answer



                                share|cite|improve this answer










                                answered 2 hours ago









                                ShaunShaun

                                10.1k113685




                                10.1k113685











                                • $begingroup$
                                  Why the downvote?
                                  $endgroup$
                                  – Shaun
                                  1 hour ago
















                                • $begingroup$
                                  Why the downvote?
                                  $endgroup$
                                  – Shaun
                                  1 hour ago















                                $begingroup$
                                Why the downvote?
                                $endgroup$
                                – Shaun
                                1 hour ago




                                $begingroup$
                                Why the downvote?
                                $endgroup$
                                – Shaun
                                1 hour ago

















                                draft saved

                                draft discarded
















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid


                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.

                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3173761%2fwhy-does-this-cyclic-subgroup-have-only-4-subgroups%23new-answer', 'question_page');

                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                名間水力發電廠 目录 沿革 設施 鄰近設施 註釋 外部連結 导航菜单23°50′10″N 120°42′41″E / 23.83611°N 120.71139°E / 23.83611; 120.7113923°50′10″N 120°42′41″E / 23.83611°N 120.71139°E / 23.83611; 120.71139計畫概要原始内容臺灣第一座BOT 模式開發的水力發電廠-名間水力電廠名間水力發電廠 水利署首件BOT案原始内容《小檔案》名間電廠 首座BOT水力發電廠原始内容名間電廠BOT - 經濟部水利署中區水資源局

                                Prove that NP is closed under karp reduction?Space(n) not closed under Karp reductions - what about NTime(n)?Class P is closed under rotation?Prove or disprove that $NL$ is closed under polynomial many-one reductions$mathbfNC_2$ is closed under log-space reductionOn Karp reductionwhen can I know if a class (complexity) is closed under reduction (cook/karp)Check if class $PSPACE$ is closed under polyonomially space reductionIs NPSPACE also closed under polynomial-time reduction and under log-space reduction?Prove PSPACE is closed under complement?Prove PSPACE is closed under union?

                                Is my guitar’s action too high? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Strings too stiff on a recently purchased acoustic guitar | Cort AD880CEIs the action of my guitar really high?Μy little finger is too weak to play guitarWith guitar, how long should I give my fingers to strengthen / callous?When playing a fret the guitar sounds mutedPlaying (Barre) chords up the guitar neckI think my guitar strings are wound too tight and I can't play barre chordsF barre chord on an SG guitarHow to find to the right strings of a barre chord by feel?High action on higher fret on my steel acoustic guitar