A Standard Integral EquationLinear versus non-linear integral equationsUnderstanding why the roots of homogeneous difference equation must be eigenvaluesIntegral equation solution: $y(x) = 1 + lambdaintlimits_0^2cos(x-t) y(t) mathrmdt$Integrating with respect to time a double derivative $ddotphi + frac bmdotphi = fracFmr$Integral with Bessel FunctionsEigenvalue problem for integrals in multiple dimensionsStuck on finding the $2times 2$ system of differential equationsConversion of second order ode into integral equationSolving a dual integral equation involving a zeroth-order Bessel functionHow to find a basis of eigenvectors??

Pronouncing Homer as in modern Greek

Latex for-and in equation

Is the next prime number always the next number divisible by the current prime number, except for any numbers previously divisible by primes?

Adding empty element to declared container without declaring type of element

The most efficient algorithm to find all possible integer pairs which sum to a given integer

node command while defining a coordinate in TikZ

Organic chemistry Iodoform Reaction

Simulating a probability of 1 of 2^N with less than N random bits

How to interpret the phrase "t’en a fait voir à toi"?

What would you call a finite collection of unordered objects that are not necessarily distinct?

How to prevent YouTube from showing already watched videos?

Is infinity mathematically observable?

Can I rely on these GitHub repository files?

Is it possible to build a CPA Secure encryption scheme which remains secure even when the encryption of secret key is given?

Can I create an upright 7-foot × 5-foot wall with the Minor Illusion spell?

What is Sitecore Managed Cloud?

Who must act to prevent Brexit on March 29th?

Bob has never been a M before

Why are on-board computers allowed to change controls without notifying the pilots?

Would it be legal for a US State to ban exports of a natural resource?

A social experiment. What is the worst that can happen?

What to do when my ideas aren't chosen, when I strongly disagree with the chosen solution?

How can I successfully establish a nationwide combat training program for a large country?

Can a Bard use an arcane focus?



A Standard Integral Equation


Linear versus non-linear integral equationsUnderstanding why the roots of homogeneous difference equation must be eigenvaluesIntegral equation solution: $y(x) = 1 + lambdaintlimits_0^2cos(x-t) y(t) mathrmdt$Integrating with respect to time a double derivative $ddotphi + frac bmdotphi = fracFmr$Integral with Bessel FunctionsEigenvalue problem for integrals in multiple dimensionsStuck on finding the $2times 2$ system of differential equationsConversion of second order ode into integral equationSolving a dual integral equation involving a zeroth-order Bessel functionHow to find a basis of eigenvectors??













3












$begingroup$


Consider the integral equation



$$phi(x) = x + lambdaint_0^1 phi(s),ds$$



Integrating with respect to $x$ from $x=0$ to $x=1$:



$$int_0^1 phi(x),dx = int_0^1x,dx + lambda int_0^1Big[int_0^1phi(s),dsBig],dx$$



which is equivalent to



$$int_0^1 phi(x),dx = frac12 + lambda int_0^1phi(s),ds$$



How can I go from here in order to solve the problem for the homogeneous case and find the corresponding characteristic values and associated rank?










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    What is $lambda$? What do you mean by "solve the problem"? I don't see what "the problem" is supposed to mean. Of which object do you want to find the characteristic values and ranks? Have you checked your definition of $phi$?
    $endgroup$
    – James
    6 hours ago










  • $begingroup$
    My apologies, $lambda$ is an arbitrary constant. In essence I want to obtain an expression of $phi(x)$ which does not contain a function of $s$, which the initial integral equation has.
    $endgroup$
    – LightningStrike
    6 hours ago















3












$begingroup$


Consider the integral equation



$$phi(x) = x + lambdaint_0^1 phi(s),ds$$



Integrating with respect to $x$ from $x=0$ to $x=1$:



$$int_0^1 phi(x),dx = int_0^1x,dx + lambda int_0^1Big[int_0^1phi(s),dsBig],dx$$



which is equivalent to



$$int_0^1 phi(x),dx = frac12 + lambda int_0^1phi(s),ds$$



How can I go from here in order to solve the problem for the homogeneous case and find the corresponding characteristic values and associated rank?










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    What is $lambda$? What do you mean by "solve the problem"? I don't see what "the problem" is supposed to mean. Of which object do you want to find the characteristic values and ranks? Have you checked your definition of $phi$?
    $endgroup$
    – James
    6 hours ago










  • $begingroup$
    My apologies, $lambda$ is an arbitrary constant. In essence I want to obtain an expression of $phi(x)$ which does not contain a function of $s$, which the initial integral equation has.
    $endgroup$
    – LightningStrike
    6 hours ago













3












3








3





$begingroup$


Consider the integral equation



$$phi(x) = x + lambdaint_0^1 phi(s),ds$$



Integrating with respect to $x$ from $x=0$ to $x=1$:



$$int_0^1 phi(x),dx = int_0^1x,dx + lambda int_0^1Big[int_0^1phi(s),dsBig],dx$$



which is equivalent to



$$int_0^1 phi(x),dx = frac12 + lambda int_0^1phi(s),ds$$



How can I go from here in order to solve the problem for the homogeneous case and find the corresponding characteristic values and associated rank?










share|cite|improve this question











$endgroup$




Consider the integral equation



$$phi(x) = x + lambdaint_0^1 phi(s),ds$$



Integrating with respect to $x$ from $x=0$ to $x=1$:



$$int_0^1 phi(x),dx = int_0^1x,dx + lambda int_0^1Big[int_0^1phi(s),dsBig],dx$$



which is equivalent to



$$int_0^1 phi(x),dx = frac12 + lambda int_0^1phi(s),ds$$



How can I go from here in order to solve the problem for the homogeneous case and find the corresponding characteristic values and associated rank?







linear-algebra integration matrix-equations






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 5 hours ago







LightningStrike

















asked 6 hours ago









LightningStrikeLightningStrike

455




455







  • 1




    $begingroup$
    What is $lambda$? What do you mean by "solve the problem"? I don't see what "the problem" is supposed to mean. Of which object do you want to find the characteristic values and ranks? Have you checked your definition of $phi$?
    $endgroup$
    – James
    6 hours ago










  • $begingroup$
    My apologies, $lambda$ is an arbitrary constant. In essence I want to obtain an expression of $phi(x)$ which does not contain a function of $s$, which the initial integral equation has.
    $endgroup$
    – LightningStrike
    6 hours ago












  • 1




    $begingroup$
    What is $lambda$? What do you mean by "solve the problem"? I don't see what "the problem" is supposed to mean. Of which object do you want to find the characteristic values and ranks? Have you checked your definition of $phi$?
    $endgroup$
    – James
    6 hours ago










  • $begingroup$
    My apologies, $lambda$ is an arbitrary constant. In essence I want to obtain an expression of $phi(x)$ which does not contain a function of $s$, which the initial integral equation has.
    $endgroup$
    – LightningStrike
    6 hours ago







1




1




$begingroup$
What is $lambda$? What do you mean by "solve the problem"? I don't see what "the problem" is supposed to mean. Of which object do you want to find the characteristic values and ranks? Have you checked your definition of $phi$?
$endgroup$
– James
6 hours ago




$begingroup$
What is $lambda$? What do you mean by "solve the problem"? I don't see what "the problem" is supposed to mean. Of which object do you want to find the characteristic values and ranks? Have you checked your definition of $phi$?
$endgroup$
– James
6 hours ago












$begingroup$
My apologies, $lambda$ is an arbitrary constant. In essence I want to obtain an expression of $phi(x)$ which does not contain a function of $s$, which the initial integral equation has.
$endgroup$
– LightningStrike
6 hours ago




$begingroup$
My apologies, $lambda$ is an arbitrary constant. In essence I want to obtain an expression of $phi(x)$ which does not contain a function of $s$, which the initial integral equation has.
$endgroup$
– LightningStrike
6 hours ago










4 Answers
4






active

oldest

votes


















4












$begingroup$

Relabelling the dummy variable $xmapsto s$ on the LHS of your final equation, $$int_0^1phi(s),ds-lambdaint_0^1phi(s),ds=frac12\implies int_0^1phi(s),ds=frac12(1-lambda)$$



Thus $$phi(x)=x+fraclambda2(1-lambda)$$






share|cite|improve this answer









$endgroup$




















    2












    $begingroup$

    Note $int_0^1phi(s)ds$ is a constant say $a$. Your functional equation (FE) can be rewritten as: $$phi(x)=x+alambda$$
    Putting into FE yields:




    $$x+alambda=x+lambdaint_0^1(s+alambda )ds iff alambda=lambdabig(frac12+lambda abig)$$
    If $lambda=0$ then $phi(x)=x$



    if $lambdane 1$ $a=frac12+lambda aiff ( 1-lambda)a=frac12iff a=frac12-2lambda$ and then $phi(x)=x+fraclambda2-2lambda$



    If $lambda=1$ there won’t besuch $phi$.







    share|cite|improve this answer









    $endgroup$




















      0












      $begingroup$

      If you are after finding $phi(x)$, one approach that comes to mind is to assume it is smooth enough to have a normally convergent (so we can interchange series summation and integration) Taylor expansion on $[0, 1]$:
      $$
      phi(x) = sum_n geq 0 a_n x^n.
      $$

      Substituting it into your equation, we get:
      $$
      sum_n geq 0 a_n x^n = x + lambda sum_n geq 0a_n over n+1.
      $$

      Matching up the coefficients of the difference powers of $x$, we get:
      $$
      a_n = 0 quad mbox for n geq 2,
      $$

      $$
      a_1 = 1,
      $$

      and
      $$
      a_0 = lambda left(a_0 + a_1 over 2right).
      $$

      This gives a relationship between $a_0$ and $lambda$.






      share|cite|improve this answer









      $endgroup$




















        0












        $begingroup$

        Note that since $lambdaint_0^1 phi(s),ds$ is a constant (with respect to $x$), then we can write$$phi(x)=x+a$$and by substitution we conclude that $$x+a=x+lambdaint _0^1x+adximplies\a=lambda(1over 2+a)implies\a=lambdaover 2-2lambda$$ and we obtain$$phi(x)=x+lambdaover 2-2lambdaquad,quad lambdane 1$$The case $lambda=1$ leads to no solution.






        share|cite|improve this answer









        $endgroup$












          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3162106%2fa-standard-integral-equation%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          4 Answers
          4






          active

          oldest

          votes








          4 Answers
          4






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          4












          $begingroup$

          Relabelling the dummy variable $xmapsto s$ on the LHS of your final equation, $$int_0^1phi(s),ds-lambdaint_0^1phi(s),ds=frac12\implies int_0^1phi(s),ds=frac12(1-lambda)$$



          Thus $$phi(x)=x+fraclambda2(1-lambda)$$






          share|cite|improve this answer









          $endgroup$

















            4












            $begingroup$

            Relabelling the dummy variable $xmapsto s$ on the LHS of your final equation, $$int_0^1phi(s),ds-lambdaint_0^1phi(s),ds=frac12\implies int_0^1phi(s),ds=frac12(1-lambda)$$



            Thus $$phi(x)=x+fraclambda2(1-lambda)$$






            share|cite|improve this answer









            $endgroup$















              4












              4








              4





              $begingroup$

              Relabelling the dummy variable $xmapsto s$ on the LHS of your final equation, $$int_0^1phi(s),ds-lambdaint_0^1phi(s),ds=frac12\implies int_0^1phi(s),ds=frac12(1-lambda)$$



              Thus $$phi(x)=x+fraclambda2(1-lambda)$$






              share|cite|improve this answer









              $endgroup$



              Relabelling the dummy variable $xmapsto s$ on the LHS of your final equation, $$int_0^1phi(s),ds-lambdaint_0^1phi(s),ds=frac12\implies int_0^1phi(s),ds=frac12(1-lambda)$$



              Thus $$phi(x)=x+fraclambda2(1-lambda)$$







              share|cite|improve this answer












              share|cite|improve this answer



              share|cite|improve this answer










              answered 6 hours ago









              John DoeJohn Doe

              11.3k11239




              11.3k11239





















                  2












                  $begingroup$

                  Note $int_0^1phi(s)ds$ is a constant say $a$. Your functional equation (FE) can be rewritten as: $$phi(x)=x+alambda$$
                  Putting into FE yields:




                  $$x+alambda=x+lambdaint_0^1(s+alambda )ds iff alambda=lambdabig(frac12+lambda abig)$$
                  If $lambda=0$ then $phi(x)=x$



                  if $lambdane 1$ $a=frac12+lambda aiff ( 1-lambda)a=frac12iff a=frac12-2lambda$ and then $phi(x)=x+fraclambda2-2lambda$



                  If $lambda=1$ there won’t besuch $phi$.







                  share|cite|improve this answer









                  $endgroup$

















                    2












                    $begingroup$

                    Note $int_0^1phi(s)ds$ is a constant say $a$. Your functional equation (FE) can be rewritten as: $$phi(x)=x+alambda$$
                    Putting into FE yields:




                    $$x+alambda=x+lambdaint_0^1(s+alambda )ds iff alambda=lambdabig(frac12+lambda abig)$$
                    If $lambda=0$ then $phi(x)=x$



                    if $lambdane 1$ $a=frac12+lambda aiff ( 1-lambda)a=frac12iff a=frac12-2lambda$ and then $phi(x)=x+fraclambda2-2lambda$



                    If $lambda=1$ there won’t besuch $phi$.







                    share|cite|improve this answer









                    $endgroup$















                      2












                      2








                      2





                      $begingroup$

                      Note $int_0^1phi(s)ds$ is a constant say $a$. Your functional equation (FE) can be rewritten as: $$phi(x)=x+alambda$$
                      Putting into FE yields:




                      $$x+alambda=x+lambdaint_0^1(s+alambda )ds iff alambda=lambdabig(frac12+lambda abig)$$
                      If $lambda=0$ then $phi(x)=x$



                      if $lambdane 1$ $a=frac12+lambda aiff ( 1-lambda)a=frac12iff a=frac12-2lambda$ and then $phi(x)=x+fraclambda2-2lambda$



                      If $lambda=1$ there won’t besuch $phi$.







                      share|cite|improve this answer









                      $endgroup$



                      Note $int_0^1phi(s)ds$ is a constant say $a$. Your functional equation (FE) can be rewritten as: $$phi(x)=x+alambda$$
                      Putting into FE yields:




                      $$x+alambda=x+lambdaint_0^1(s+alambda )ds iff alambda=lambdabig(frac12+lambda abig)$$
                      If $lambda=0$ then $phi(x)=x$



                      if $lambdane 1$ $a=frac12+lambda aiff ( 1-lambda)a=frac12iff a=frac12-2lambda$ and then $phi(x)=x+fraclambda2-2lambda$



                      If $lambda=1$ there won’t besuch $phi$.








                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered 5 hours ago









                      HAMIDINE SOUMAREHAMIDINE SOUMARE

                      1,478211




                      1,478211





















                          0












                          $begingroup$

                          If you are after finding $phi(x)$, one approach that comes to mind is to assume it is smooth enough to have a normally convergent (so we can interchange series summation and integration) Taylor expansion on $[0, 1]$:
                          $$
                          phi(x) = sum_n geq 0 a_n x^n.
                          $$

                          Substituting it into your equation, we get:
                          $$
                          sum_n geq 0 a_n x^n = x + lambda sum_n geq 0a_n over n+1.
                          $$

                          Matching up the coefficients of the difference powers of $x$, we get:
                          $$
                          a_n = 0 quad mbox for n geq 2,
                          $$

                          $$
                          a_1 = 1,
                          $$

                          and
                          $$
                          a_0 = lambda left(a_0 + a_1 over 2right).
                          $$

                          This gives a relationship between $a_0$ and $lambda$.






                          share|cite|improve this answer









                          $endgroup$

















                            0












                            $begingroup$

                            If you are after finding $phi(x)$, one approach that comes to mind is to assume it is smooth enough to have a normally convergent (so we can interchange series summation and integration) Taylor expansion on $[0, 1]$:
                            $$
                            phi(x) = sum_n geq 0 a_n x^n.
                            $$

                            Substituting it into your equation, we get:
                            $$
                            sum_n geq 0 a_n x^n = x + lambda sum_n geq 0a_n over n+1.
                            $$

                            Matching up the coefficients of the difference powers of $x$, we get:
                            $$
                            a_n = 0 quad mbox for n geq 2,
                            $$

                            $$
                            a_1 = 1,
                            $$

                            and
                            $$
                            a_0 = lambda left(a_0 + a_1 over 2right).
                            $$

                            This gives a relationship between $a_0$ and $lambda$.






                            share|cite|improve this answer









                            $endgroup$















                              0












                              0








                              0





                              $begingroup$

                              If you are after finding $phi(x)$, one approach that comes to mind is to assume it is smooth enough to have a normally convergent (so we can interchange series summation and integration) Taylor expansion on $[0, 1]$:
                              $$
                              phi(x) = sum_n geq 0 a_n x^n.
                              $$

                              Substituting it into your equation, we get:
                              $$
                              sum_n geq 0 a_n x^n = x + lambda sum_n geq 0a_n over n+1.
                              $$

                              Matching up the coefficients of the difference powers of $x$, we get:
                              $$
                              a_n = 0 quad mbox for n geq 2,
                              $$

                              $$
                              a_1 = 1,
                              $$

                              and
                              $$
                              a_0 = lambda left(a_0 + a_1 over 2right).
                              $$

                              This gives a relationship between $a_0$ and $lambda$.






                              share|cite|improve this answer









                              $endgroup$



                              If you are after finding $phi(x)$, one approach that comes to mind is to assume it is smooth enough to have a normally convergent (so we can interchange series summation and integration) Taylor expansion on $[0, 1]$:
                              $$
                              phi(x) = sum_n geq 0 a_n x^n.
                              $$

                              Substituting it into your equation, we get:
                              $$
                              sum_n geq 0 a_n x^n = x + lambda sum_n geq 0a_n over n+1.
                              $$

                              Matching up the coefficients of the difference powers of $x$, we get:
                              $$
                              a_n = 0 quad mbox for n geq 2,
                              $$

                              $$
                              a_1 = 1,
                              $$

                              and
                              $$
                              a_0 = lambda left(a_0 + a_1 over 2right).
                              $$

                              This gives a relationship between $a_0$ and $lambda$.







                              share|cite|improve this answer












                              share|cite|improve this answer



                              share|cite|improve this answer










                              answered 6 hours ago









                              avsavs

                              3,749514




                              3,749514





















                                  0












                                  $begingroup$

                                  Note that since $lambdaint_0^1 phi(s),ds$ is a constant (with respect to $x$), then we can write$$phi(x)=x+a$$and by substitution we conclude that $$x+a=x+lambdaint _0^1x+adximplies\a=lambda(1over 2+a)implies\a=lambdaover 2-2lambda$$ and we obtain$$phi(x)=x+lambdaover 2-2lambdaquad,quad lambdane 1$$The case $lambda=1$ leads to no solution.






                                  share|cite|improve this answer









                                  $endgroup$

















                                    0












                                    $begingroup$

                                    Note that since $lambdaint_0^1 phi(s),ds$ is a constant (with respect to $x$), then we can write$$phi(x)=x+a$$and by substitution we conclude that $$x+a=x+lambdaint _0^1x+adximplies\a=lambda(1over 2+a)implies\a=lambdaover 2-2lambda$$ and we obtain$$phi(x)=x+lambdaover 2-2lambdaquad,quad lambdane 1$$The case $lambda=1$ leads to no solution.






                                    share|cite|improve this answer









                                    $endgroup$















                                      0












                                      0








                                      0





                                      $begingroup$

                                      Note that since $lambdaint_0^1 phi(s),ds$ is a constant (with respect to $x$), then we can write$$phi(x)=x+a$$and by substitution we conclude that $$x+a=x+lambdaint _0^1x+adximplies\a=lambda(1over 2+a)implies\a=lambdaover 2-2lambda$$ and we obtain$$phi(x)=x+lambdaover 2-2lambdaquad,quad lambdane 1$$The case $lambda=1$ leads to no solution.






                                      share|cite|improve this answer









                                      $endgroup$



                                      Note that since $lambdaint_0^1 phi(s),ds$ is a constant (with respect to $x$), then we can write$$phi(x)=x+a$$and by substitution we conclude that $$x+a=x+lambdaint _0^1x+adximplies\a=lambda(1over 2+a)implies\a=lambdaover 2-2lambda$$ and we obtain$$phi(x)=x+lambdaover 2-2lambdaquad,quad lambdane 1$$The case $lambda=1$ leads to no solution.







                                      share|cite|improve this answer












                                      share|cite|improve this answer



                                      share|cite|improve this answer










                                      answered 5 hours ago









                                      Mostafa AyazMostafa Ayaz

                                      17.6k31039




                                      17.6k31039



























                                          draft saved

                                          draft discarded
















































                                          Thanks for contributing an answer to Mathematics Stack Exchange!


                                          • Please be sure to answer the question. Provide details and share your research!

                                          But avoid


                                          • Asking for help, clarification, or responding to other answers.

                                          • Making statements based on opinion; back them up with references or personal experience.

                                          Use MathJax to format equations. MathJax reference.


                                          To learn more, see our tips on writing great answers.




                                          draft saved


                                          draft discarded














                                          StackExchange.ready(
                                          function ()
                                          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3162106%2fa-standard-integral-equation%23new-answer', 'question_page');

                                          );

                                          Post as a guest















                                          Required, but never shown





















































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown

































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown







                                          Popular posts from this blog

                                          名間水力發電廠 目录 沿革 設施 鄰近設施 註釋 外部連結 导航菜单23°50′10″N 120°42′41″E / 23.83611°N 120.71139°E / 23.83611; 120.7113923°50′10″N 120°42′41″E / 23.83611°N 120.71139°E / 23.83611; 120.71139計畫概要原始内容臺灣第一座BOT 模式開發的水力發電廠-名間水力電廠名間水力發電廠 水利署首件BOT案原始内容《小檔案》名間電廠 首座BOT水力發電廠原始内容名間電廠BOT - 經濟部水利署中區水資源局

                                          Prove that NP is closed under karp reduction?Space(n) not closed under Karp reductions - what about NTime(n)?Class P is closed under rotation?Prove or disprove that $NL$ is closed under polynomial many-one reductions$mathbfNC_2$ is closed under log-space reductionOn Karp reductionwhen can I know if a class (complexity) is closed under reduction (cook/karp)Check if class $PSPACE$ is closed under polyonomially space reductionIs NPSPACE also closed under polynomial-time reduction and under log-space reduction?Prove PSPACE is closed under complement?Prove PSPACE is closed under union?

                                          Is my guitar’s action too high? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Strings too stiff on a recently purchased acoustic guitar | Cort AD880CEIs the action of my guitar really high?Μy little finger is too weak to play guitarWith guitar, how long should I give my fingers to strengthen / callous?When playing a fret the guitar sounds mutedPlaying (Barre) chords up the guitar neckI think my guitar strings are wound too tight and I can't play barre chordsF barre chord on an SG guitarHow to find to the right strings of a barre chord by feel?High action on higher fret on my steel acoustic guitar