A problem in Probability theoryIf $G(x)=P[Xgeq x]$ then $Xgeq c$ is equivalent to $G(X)leq G(c)$ $P$-almost surelyTrying to establish an inequality on probabilityCan some probability triple give rise to any probability distribution?Expectation of $mathbbE(X^k+1)$Is PDF unique for a random variable $X$ in given probability space?Conditional expectation on different probability measureAverage of Random variables converges in probability.Range of a random variable is measurableIn probability theory what does the notation $int_Omega X(omega) P(domega)$ mean?Probability theory: Convergence
Is exact Kanji stroke length important?
What is paid subscription needed for in Mortal Kombat 11?
How do I extract a value from a time formatted value in excel?
A problem in Probability theory
Pre-amplifier input protection
Why not increase contact surface when reentering the atmosphere?
Unreliable Magic - Is it worth it?
when is out of tune ok?
How easy is it to start Magic from scratch?
Is there a korbon needed for conversion?
How do we know the LHC results are robust?
Implement the Thanos sorting algorithm
Increase performance creating Mandelbrot set in python
What does "I’d sit this one out, Cap," imply or mean in the context?
Energy of the particles in the particle accelerator
Customer Requests (Sometimes) Drive Me Bonkers!
What does 算不上 mean in 算不上太美好的日子?
Was Spock the First Vulcan in Starfleet?
How can I get through very long and very dry, but also very useful technical documents when learning a new tool?
Shortcut for value of this indefinite integral?
What is the intuitive meaning of having a linear relationship between the logs of two variables?
How did Doctor Strange see the winning outcome in Avengers: Infinity War?
How to safely derail a train during transit?
How can I quit an app using Terminal?
A problem in Probability theory
If $G(x)=P[Xgeq x]$ then $Xgeq c$ is equivalent to $G(X)leq G(c)$ $P$-almost surelyTrying to establish an inequality on probabilityCan some probability triple give rise to any probability distribution?Expectation of $mathbbE(X^k+1)$Is PDF unique for a random variable $X$ in given probability space?Conditional expectation on different probability measureAverage of Random variables converges in probability.Range of a random variable is measurableIn probability theory what does the notation $int_Omega X(omega) P(domega)$ mean?Probability theory: Convergence
$begingroup$
This is a problem in KaiLai Chung's A Course in Probability Theory.
Given a nonnegative random variable $X$ defined on $Omega$, if $mathbbE(X^2)=1$ and $mathbbE(X)geq a >0$, prove that $$mathbbP(Xgeq lambda a)geq (a-lambda a)^2$$
for $0leqlambda leq 1$.
Let $A=xin Omega:X(x)geq lambda a$, we get
$$int_A (X-lambda a)geq a-int_Alambda a -int_A^cX$$
and $$int_A (X^2-lambda^2 a^2)=1-int_Alambda^2a^2-int_A^cX^2$$
I want to contrast $int_A (X-lambda a)$ and $int_A (X^2-lambda^2 a^2)$, but I don't know how to do it, could anyone gives me some hints?
probability integration lp-spaces
$endgroup$
add a comment |
$begingroup$
This is a problem in KaiLai Chung's A Course in Probability Theory.
Given a nonnegative random variable $X$ defined on $Omega$, if $mathbbE(X^2)=1$ and $mathbbE(X)geq a >0$, prove that $$mathbbP(Xgeq lambda a)geq (a-lambda a)^2$$
for $0leqlambda leq 1$.
Let $A=xin Omega:X(x)geq lambda a$, we get
$$int_A (X-lambda a)geq a-int_Alambda a -int_A^cX$$
and $$int_A (X^2-lambda^2 a^2)=1-int_Alambda^2a^2-int_A^cX^2$$
I want to contrast $int_A (X-lambda a)$ and $int_A (X^2-lambda^2 a^2)$, but I don't know how to do it, could anyone gives me some hints?
probability integration lp-spaces
$endgroup$
$begingroup$
Chebyshev might be useful.
$endgroup$
– copper.hat
3 hours ago
add a comment |
$begingroup$
This is a problem in KaiLai Chung's A Course in Probability Theory.
Given a nonnegative random variable $X$ defined on $Omega$, if $mathbbE(X^2)=1$ and $mathbbE(X)geq a >0$, prove that $$mathbbP(Xgeq lambda a)geq (a-lambda a)^2$$
for $0leqlambda leq 1$.
Let $A=xin Omega:X(x)geq lambda a$, we get
$$int_A (X-lambda a)geq a-int_Alambda a -int_A^cX$$
and $$int_A (X^2-lambda^2 a^2)=1-int_Alambda^2a^2-int_A^cX^2$$
I want to contrast $int_A (X-lambda a)$ and $int_A (X^2-lambda^2 a^2)$, but I don't know how to do it, could anyone gives me some hints?
probability integration lp-spaces
$endgroup$
This is a problem in KaiLai Chung's A Course in Probability Theory.
Given a nonnegative random variable $X$ defined on $Omega$, if $mathbbE(X^2)=1$ and $mathbbE(X)geq a >0$, prove that $$mathbbP(Xgeq lambda a)geq (a-lambda a)^2$$
for $0leqlambda leq 1$.
Let $A=xin Omega:X(x)geq lambda a$, we get
$$int_A (X-lambda a)geq a-int_Alambda a -int_A^cX$$
and $$int_A (X^2-lambda^2 a^2)=1-int_Alambda^2a^2-int_A^cX^2$$
I want to contrast $int_A (X-lambda a)$ and $int_A (X^2-lambda^2 a^2)$, but I don't know how to do it, could anyone gives me some hints?
probability integration lp-spaces
probability integration lp-spaces
asked 3 hours ago
Xin FuXin Fu
1568
1568
$begingroup$
Chebyshev might be useful.
$endgroup$
– copper.hat
3 hours ago
add a comment |
$begingroup$
Chebyshev might be useful.
$endgroup$
– copper.hat
3 hours ago
$begingroup$
Chebyshev might be useful.
$endgroup$
– copper.hat
3 hours ago
$begingroup$
Chebyshev might be useful.
$endgroup$
– copper.hat
3 hours ago
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
You have
$$
alemathbb E(X) = int_Xlelambda aX,dP + int_Xgelambda aX,dP,le,lambda a + int_Xgelambda aX,dP.
$$
Hence,
$$
a(1-lambda),le,int_Xgelambda aX,dP,le,left(int_Xgelambda aX^2,dPright)^1/2cdot P(Xgelambda a)^1/2,le,P(Xgelambda a)^1/2.
$$
Square this and you're done.
$endgroup$
$begingroup$
Thank you very much!
$endgroup$
– Xin Fu
2 hours ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3165418%2fa-problem-in-probability-theory%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You have
$$
alemathbb E(X) = int_Xlelambda aX,dP + int_Xgelambda aX,dP,le,lambda a + int_Xgelambda aX,dP.
$$
Hence,
$$
a(1-lambda),le,int_Xgelambda aX,dP,le,left(int_Xgelambda aX^2,dPright)^1/2cdot P(Xgelambda a)^1/2,le,P(Xgelambda a)^1/2.
$$
Square this and you're done.
$endgroup$
$begingroup$
Thank you very much!
$endgroup$
– Xin Fu
2 hours ago
add a comment |
$begingroup$
You have
$$
alemathbb E(X) = int_Xlelambda aX,dP + int_Xgelambda aX,dP,le,lambda a + int_Xgelambda aX,dP.
$$
Hence,
$$
a(1-lambda),le,int_Xgelambda aX,dP,le,left(int_Xgelambda aX^2,dPright)^1/2cdot P(Xgelambda a)^1/2,le,P(Xgelambda a)^1/2.
$$
Square this and you're done.
$endgroup$
$begingroup$
Thank you very much!
$endgroup$
– Xin Fu
2 hours ago
add a comment |
$begingroup$
You have
$$
alemathbb E(X) = int_Xlelambda aX,dP + int_Xgelambda aX,dP,le,lambda a + int_Xgelambda aX,dP.
$$
Hence,
$$
a(1-lambda),le,int_Xgelambda aX,dP,le,left(int_Xgelambda aX^2,dPright)^1/2cdot P(Xgelambda a)^1/2,le,P(Xgelambda a)^1/2.
$$
Square this and you're done.
$endgroup$
You have
$$
alemathbb E(X) = int_Xlelambda aX,dP + int_Xgelambda aX,dP,le,lambda a + int_Xgelambda aX,dP.
$$
Hence,
$$
a(1-lambda),le,int_Xgelambda aX,dP,le,left(int_Xgelambda aX^2,dPright)^1/2cdot P(Xgelambda a)^1/2,le,P(Xgelambda a)^1/2.
$$
Square this and you're done.
answered 2 hours ago
amsmathamsmath
3,364419
3,364419
$begingroup$
Thank you very much!
$endgroup$
– Xin Fu
2 hours ago
add a comment |
$begingroup$
Thank you very much!
$endgroup$
– Xin Fu
2 hours ago
$begingroup$
Thank you very much!
$endgroup$
– Xin Fu
2 hours ago
$begingroup$
Thank you very much!
$endgroup$
– Xin Fu
2 hours ago
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3165418%2fa-problem-in-probability-theory%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Chebyshev might be useful.
$endgroup$
– copper.hat
3 hours ago