Reverse int within the 32-bit signed integer range: $[−2^31, 2^31 − 1]$ OptimizedReverse int within the 32-bit signed integer range: $[−2^31, 2^31 − 1]$
Tiptoe or tiphoof? Adjusting words to better fit fantasy races
Modify casing of marked letters
Was the picture area of a CRT a parallelogram (instead of a true rectangle)?
How to be diplomatic in refusing to write code that breaches the privacy of our users
Is a roofing delivery truck likely to crack my driveway slab?
Implement the Thanos sorting algorithm
What is the opposite of 'gravitas'?
Trouble understanding overseas colleagues
What would happen if the UK refused to take part in EU Parliamentary elections?
What defines a dissertation?
Is it correct to write "is not focus on"?
Should my PhD thesis be submitted under my legal name?
Valid Badminton Score?
Go Pregnant or Go Home
What are the ramifications of creating a homebrew world without an Astral Plane?
How can I get through very long and very dry, but also very useful technical documents when learning a new tool?
What's a natural way to say that someone works somewhere (for a job)?
Can I Retrieve Email Addresses from BCC?
Best way to store options for panels
apt-get update is failing in debian
The baby cries all morning
Hostile work environment after whistle-blowing on coworker and our boss. What do I do?
At which point does a character regain all their Hit Dice?
Hide Select Output from T-SQL
Reverse int within the 32-bit signed integer range: $[−2^31, 2^31 − 1]$ Optimized
Reverse int within the 32-bit signed integer range: $[−2^31, 2^31 − 1]$
$begingroup$
LeetCode Problem
Reverse digits of a 32-bit signed integer. When the reversed integer overflows return 0.
Feedback
Optimized from beta code in the original question here. Based on this LeetCode problem.. I'm trying to come up with a good approach that just math operations to iterate a serious of digits using division, almost treating the int
like a stack
poping using modulus, and pushing using multiplication. I think there still may be some overflow edge cases I am not catching like 1534236469
, but need some help coming up with how to detect and prevent such cases.
#include <cassert>
#include <climits>
#include <cmath>
#include <iostream>
class Solution
public:
int reverse(int i)
if(i > INT_MAX
;
int main()
Solution s;
assert(s.reverse(1) == 1);
assert(s.reverse(0) == 0);
assert(s.reverse(123) == 321);
assert(s.reverse(120) == 21);
assert(s.reverse(-123) == -321);
assert(s.reverse(1207) == 7021);
assert(s.reverse(1534236469) == 0);
assert(s.reverse(-2147483412) == -2143847412);
c++ mathematics integer integer-overflow
$endgroup$
add a comment |
$begingroup$
LeetCode Problem
Reverse digits of a 32-bit signed integer. When the reversed integer overflows return 0.
Feedback
Optimized from beta code in the original question here. Based on this LeetCode problem.. I'm trying to come up with a good approach that just math operations to iterate a serious of digits using division, almost treating the int
like a stack
poping using modulus, and pushing using multiplication. I think there still may be some overflow edge cases I am not catching like 1534236469
, but need some help coming up with how to detect and prevent such cases.
#include <cassert>
#include <climits>
#include <cmath>
#include <iostream>
class Solution
public:
int reverse(int i)
if(i > INT_MAX
;
int main()
Solution s;
assert(s.reverse(1) == 1);
assert(s.reverse(0) == 0);
assert(s.reverse(123) == 321);
assert(s.reverse(120) == 21);
assert(s.reverse(-123) == -321);
assert(s.reverse(1207) == 7021);
assert(s.reverse(1534236469) == 0);
assert(s.reverse(-2147483412) == -2143847412);
c++ mathematics integer integer-overflow
$endgroup$
add a comment |
$begingroup$
LeetCode Problem
Reverse digits of a 32-bit signed integer. When the reversed integer overflows return 0.
Feedback
Optimized from beta code in the original question here. Based on this LeetCode problem.. I'm trying to come up with a good approach that just math operations to iterate a serious of digits using division, almost treating the int
like a stack
poping using modulus, and pushing using multiplication. I think there still may be some overflow edge cases I am not catching like 1534236469
, but need some help coming up with how to detect and prevent such cases.
#include <cassert>
#include <climits>
#include <cmath>
#include <iostream>
class Solution
public:
int reverse(int i)
if(i > INT_MAX
;
int main()
Solution s;
assert(s.reverse(1) == 1);
assert(s.reverse(0) == 0);
assert(s.reverse(123) == 321);
assert(s.reverse(120) == 21);
assert(s.reverse(-123) == -321);
assert(s.reverse(1207) == 7021);
assert(s.reverse(1534236469) == 0);
assert(s.reverse(-2147483412) == -2143847412);
c++ mathematics integer integer-overflow
$endgroup$
LeetCode Problem
Reverse digits of a 32-bit signed integer. When the reversed integer overflows return 0.
Feedback
Optimized from beta code in the original question here. Based on this LeetCode problem.. I'm trying to come up with a good approach that just math operations to iterate a serious of digits using division, almost treating the int
like a stack
poping using modulus, and pushing using multiplication. I think there still may be some overflow edge cases I am not catching like 1534236469
, but need some help coming up with how to detect and prevent such cases.
#include <cassert>
#include <climits>
#include <cmath>
#include <iostream>
class Solution
public:
int reverse(int i)
if(i > INT_MAX
;
int main()
Solution s;
assert(s.reverse(1) == 1);
assert(s.reverse(0) == 0);
assert(s.reverse(123) == 321);
assert(s.reverse(120) == 21);
assert(s.reverse(-123) == -321);
assert(s.reverse(1207) == 7021);
assert(s.reverse(1534236469) == 0);
assert(s.reverse(-2147483412) == -2143847412);
c++ mathematics integer integer-overflow
c++ mathematics integer integer-overflow
edited 39 secs ago
greg
asked 5 mins ago
greggreg
38218
38218
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
);
);
, "mathjax-editing");
StackExchange.ifUsing("editor", function ()
StackExchange.using("externalEditor", function ()
StackExchange.using("snippets", function ()
StackExchange.snippets.init();
);
);
, "code-snippets");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "196"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f216300%2freverse-int-within-the-32-bit-signed-integer-range-%25e2%2588%2592231-231-%25e2%2588%2592-1-op%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Code Review Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f216300%2freverse-int-within-the-32-bit-signed-integer-range-%25e2%2588%2592231-231-%25e2%2588%2592-1-op%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown