Ways to speed up user implemented RK4Speed up Numerical IntegrationSpeed of convergence for NIntegrateTough Calculation, novice mathematica userNumerical integration's speedNumerical integral speedImprove the speed of Gaussian quadrature integrationSolving an unstable BVP numerically, accurately and efficientlyHow to speed up integral of results of PDE modelSolve BVP involving user defined functionUser defined ArcTan function

voltage of sounds of mp3files

What defines a dissertation?

Why is delta-v is the most useful quantity for planning space travel?

Star/Wye electrical connection math symbol

How do I rename a LINUX host without needing to reboot for the rename to take effect?

How to verify if g is a generator for p?

What would happen if the UK refused to take part in EU Parliamentary elections?

Is it correct to write "is not focus on"?

How do I keep an essay about "feeling flat" from feeling flat?

What is the oldest known work of fiction?

when is out of tune ok?

What is difference between behavior and behaviour

Hide Select Output from T-SQL

Print name if parameter passed to function

The baby cries all morning

The plural of 'stomach"

Displaying the order of the columns of a table

Using parameter substitution on a Bash array

Valid Badminton Score?

Are there any comparative studies done between Ashtavakra Gita and Buddhim?

How does it work when somebody invests in my business?

Go Pregnant or Go Home

Coordinate position not precise

Applicability of Single Responsibility Principle



Ways to speed up user implemented RK4


Speed up Numerical IntegrationSpeed of convergence for NIntegrateTough Calculation, novice mathematica userNumerical integration's speedNumerical integral speedImprove the speed of Gaussian quadrature integrationSolving an unstable BVP numerically, accurately and efficientlyHow to speed up integral of results of PDE modelSolve BVP involving user defined functionUser defined ArcTan function













3












$begingroup$


So, I've implemented RK4, and I'm wondering what I can do to make it more efficient? What I've got so far is below. I wish to still record all steps. I think AppendTo is doing the most damage to the time, is there a faster alternative?



rk4[f_, variables_, valtinit_, tinit_, tfinal_, nsteps_] := 
Module[table, xlist, ylist, step, k1, k2, k3, k4,
xlist = tinit;
step = N[(tfinal - tinit)/(nsteps)];
ylist = valtinit;
table = xlist, ylist;
Table[
k1 = step* f /. MapThread[Rule, variables, ylist]; (*
Equivalent to step* f/.Thread[Rule[variables,ylist]]*)
k2 = step*f /. MapThread[Rule, variables, k1/2 + ylist];
k3 = step*f /. MapThread[Rule, variables, k2/2 + ylist];
k4 = step*f /. MapThread[Rule, variables, k3 + ylist];
ylist += 1/6 (k1 + 2 (k2 + k3) + k4);
xlist += step;
AppendTo[table, xlist, ylist];
xlist, ylist, nsteps];
table
];


Example Input:



funclist = -x + y, x - y;
initials = 1, 2;
variables = x, y;
init = 0;
final = 200;
nstep = 20000;
approx = rk4[funclist, variables, initials, init, final, nstep]//AbsoluteTiming;



3.59932,...




I'd love some suggestions!










share|improve this question









$endgroup$







  • 1




    $begingroup$
    AppendTo is quadratic time complexity. Might be better to preallocate and set by index. Also it'll be much faster to not use Rule and instead code stuff up a little bit more explicitly. As a general rule, too, use vectorized operators. Those can be very fast. And if everything can be totally functional over "packed arrays" (look them up here) it'll be very quick too.
    $endgroup$
    – b3m2a1
    2 hours ago










  • $begingroup$
    I'll work on implementing it more explicity, this is what came to find first though. It'll require some changes to the inputs, I'll have to ponder this. And preallocating the list is a quick change that won't be an issue to do, I can't believe I forgot that's faster :(. Thanks though!
    $endgroup$
    – Shinaolord
    2 hours ago










  • $begingroup$
    Shinaoloard, using Join[ xlist, ylist, Table[ k1 = step*f /. MapThread[Rule, variables, ylist]; k2 = step*f /. MapThread[Rule, variables, k1/2 + ylist]; k3 = step*f /. MapThread[Rule, variables, k2/2 + ylist]; k4 = step*f /. MapThread[Rule, variables, k3 + ylist]; ylist += 1/6 (k1 + 2 (k2 + k3) + k4); xlist += step; xlist, ylist, nsteps ] ] as return value is already a first step. There is no point in appending if you use a Table anyways.
    $endgroup$
    – Henrik Schumacher
    2 hours ago










  • $begingroup$
    @HenrikSchumacher do you think it would be faster to Pre-allocate a list of length nsteps, and append the values, or to join the values using table? I can obviously change Table to Do to remove the time it takes to make the table list, going by b3m2a1's method, or I could use Join as you have suggested. I'm thinking your method may be faster, though. I've already removed the MapThread part, I am testing the speed increase granted by that at the moment. Just curious which path you think will be faster.
    $endgroup$
    – Shinaolord
    2 hours ago










  • $begingroup$
    I am currently testing the speed difference between the one in the post and rk4t2[f_, valtinit_, tinit_, tfinal_, nsteps_] := Module[test, table, xlist, ylist, step, k1, k2, k3, k4, xlist = tinit; step = N[(tfinal - tinit)/(nsteps)]; ylist = valtinit; table = xlist, ylist; test = Table[ k1 = step* f[ylist] ; k2 = step*f[k1/2 + ylist]; k3 = step*f[k2/2 + ylist]; k4 = step*f[k3 + ylist]; ylist += 1/6 (k1 + 2 (k2 + k3) + k4); xlist += step; xlist, ylist, nsteps]; Join[table, test] ];
    $endgroup$
    – Shinaolord
    2 hours ago















3












$begingroup$


So, I've implemented RK4, and I'm wondering what I can do to make it more efficient? What I've got so far is below. I wish to still record all steps. I think AppendTo is doing the most damage to the time, is there a faster alternative?



rk4[f_, variables_, valtinit_, tinit_, tfinal_, nsteps_] := 
Module[table, xlist, ylist, step, k1, k2, k3, k4,
xlist = tinit;
step = N[(tfinal - tinit)/(nsteps)];
ylist = valtinit;
table = xlist, ylist;
Table[
k1 = step* f /. MapThread[Rule, variables, ylist]; (*
Equivalent to step* f/.Thread[Rule[variables,ylist]]*)
k2 = step*f /. MapThread[Rule, variables, k1/2 + ylist];
k3 = step*f /. MapThread[Rule, variables, k2/2 + ylist];
k4 = step*f /. MapThread[Rule, variables, k3 + ylist];
ylist += 1/6 (k1 + 2 (k2 + k3) + k4);
xlist += step;
AppendTo[table, xlist, ylist];
xlist, ylist, nsteps];
table
];


Example Input:



funclist = -x + y, x - y;
initials = 1, 2;
variables = x, y;
init = 0;
final = 200;
nstep = 20000;
approx = rk4[funclist, variables, initials, init, final, nstep]//AbsoluteTiming;



3.59932,...




I'd love some suggestions!










share|improve this question









$endgroup$







  • 1




    $begingroup$
    AppendTo is quadratic time complexity. Might be better to preallocate and set by index. Also it'll be much faster to not use Rule and instead code stuff up a little bit more explicitly. As a general rule, too, use vectorized operators. Those can be very fast. And if everything can be totally functional over "packed arrays" (look them up here) it'll be very quick too.
    $endgroup$
    – b3m2a1
    2 hours ago










  • $begingroup$
    I'll work on implementing it more explicity, this is what came to find first though. It'll require some changes to the inputs, I'll have to ponder this. And preallocating the list is a quick change that won't be an issue to do, I can't believe I forgot that's faster :(. Thanks though!
    $endgroup$
    – Shinaolord
    2 hours ago










  • $begingroup$
    Shinaoloard, using Join[ xlist, ylist, Table[ k1 = step*f /. MapThread[Rule, variables, ylist]; k2 = step*f /. MapThread[Rule, variables, k1/2 + ylist]; k3 = step*f /. MapThread[Rule, variables, k2/2 + ylist]; k4 = step*f /. MapThread[Rule, variables, k3 + ylist]; ylist += 1/6 (k1 + 2 (k2 + k3) + k4); xlist += step; xlist, ylist, nsteps ] ] as return value is already a first step. There is no point in appending if you use a Table anyways.
    $endgroup$
    – Henrik Schumacher
    2 hours ago










  • $begingroup$
    @HenrikSchumacher do you think it would be faster to Pre-allocate a list of length nsteps, and append the values, or to join the values using table? I can obviously change Table to Do to remove the time it takes to make the table list, going by b3m2a1's method, or I could use Join as you have suggested. I'm thinking your method may be faster, though. I've already removed the MapThread part, I am testing the speed increase granted by that at the moment. Just curious which path you think will be faster.
    $endgroup$
    – Shinaolord
    2 hours ago










  • $begingroup$
    I am currently testing the speed difference between the one in the post and rk4t2[f_, valtinit_, tinit_, tfinal_, nsteps_] := Module[test, table, xlist, ylist, step, k1, k2, k3, k4, xlist = tinit; step = N[(tfinal - tinit)/(nsteps)]; ylist = valtinit; table = xlist, ylist; test = Table[ k1 = step* f[ylist] ; k2 = step*f[k1/2 + ylist]; k3 = step*f[k2/2 + ylist]; k4 = step*f[k3 + ylist]; ylist += 1/6 (k1 + 2 (k2 + k3) + k4); xlist += step; xlist, ylist, nsteps]; Join[table, test] ];
    $endgroup$
    – Shinaolord
    2 hours ago













3












3








3


1



$begingroup$


So, I've implemented RK4, and I'm wondering what I can do to make it more efficient? What I've got so far is below. I wish to still record all steps. I think AppendTo is doing the most damage to the time, is there a faster alternative?



rk4[f_, variables_, valtinit_, tinit_, tfinal_, nsteps_] := 
Module[table, xlist, ylist, step, k1, k2, k3, k4,
xlist = tinit;
step = N[(tfinal - tinit)/(nsteps)];
ylist = valtinit;
table = xlist, ylist;
Table[
k1 = step* f /. MapThread[Rule, variables, ylist]; (*
Equivalent to step* f/.Thread[Rule[variables,ylist]]*)
k2 = step*f /. MapThread[Rule, variables, k1/2 + ylist];
k3 = step*f /. MapThread[Rule, variables, k2/2 + ylist];
k4 = step*f /. MapThread[Rule, variables, k3 + ylist];
ylist += 1/6 (k1 + 2 (k2 + k3) + k4);
xlist += step;
AppendTo[table, xlist, ylist];
xlist, ylist, nsteps];
table
];


Example Input:



funclist = -x + y, x - y;
initials = 1, 2;
variables = x, y;
init = 0;
final = 200;
nstep = 20000;
approx = rk4[funclist, variables, initials, init, final, nstep]//AbsoluteTiming;



3.59932,...




I'd love some suggestions!










share|improve this question









$endgroup$




So, I've implemented RK4, and I'm wondering what I can do to make it more efficient? What I've got so far is below. I wish to still record all steps. I think AppendTo is doing the most damage to the time, is there a faster alternative?



rk4[f_, variables_, valtinit_, tinit_, tfinal_, nsteps_] := 
Module[table, xlist, ylist, step, k1, k2, k3, k4,
xlist = tinit;
step = N[(tfinal - tinit)/(nsteps)];
ylist = valtinit;
table = xlist, ylist;
Table[
k1 = step* f /. MapThread[Rule, variables, ylist]; (*
Equivalent to step* f/.Thread[Rule[variables,ylist]]*)
k2 = step*f /. MapThread[Rule, variables, k1/2 + ylist];
k3 = step*f /. MapThread[Rule, variables, k2/2 + ylist];
k4 = step*f /. MapThread[Rule, variables, k3 + ylist];
ylist += 1/6 (k1 + 2 (k2 + k3) + k4);
xlist += step;
AppendTo[table, xlist, ylist];
xlist, ylist, nsteps];
table
];


Example Input:



funclist = -x + y, x - y;
initials = 1, 2;
variables = x, y;
init = 0;
final = 200;
nstep = 20000;
approx = rk4[funclist, variables, initials, init, final, nstep]//AbsoluteTiming;



3.59932,...




I'd love some suggestions!







differential-equations numerical-integration






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked 2 hours ago









ShinaolordShinaolord

808




808







  • 1




    $begingroup$
    AppendTo is quadratic time complexity. Might be better to preallocate and set by index. Also it'll be much faster to not use Rule and instead code stuff up a little bit more explicitly. As a general rule, too, use vectorized operators. Those can be very fast. And if everything can be totally functional over "packed arrays" (look them up here) it'll be very quick too.
    $endgroup$
    – b3m2a1
    2 hours ago










  • $begingroup$
    I'll work on implementing it more explicity, this is what came to find first though. It'll require some changes to the inputs, I'll have to ponder this. And preallocating the list is a quick change that won't be an issue to do, I can't believe I forgot that's faster :(. Thanks though!
    $endgroup$
    – Shinaolord
    2 hours ago










  • $begingroup$
    Shinaoloard, using Join[ xlist, ylist, Table[ k1 = step*f /. MapThread[Rule, variables, ylist]; k2 = step*f /. MapThread[Rule, variables, k1/2 + ylist]; k3 = step*f /. MapThread[Rule, variables, k2/2 + ylist]; k4 = step*f /. MapThread[Rule, variables, k3 + ylist]; ylist += 1/6 (k1 + 2 (k2 + k3) + k4); xlist += step; xlist, ylist, nsteps ] ] as return value is already a first step. There is no point in appending if you use a Table anyways.
    $endgroup$
    – Henrik Schumacher
    2 hours ago










  • $begingroup$
    @HenrikSchumacher do you think it would be faster to Pre-allocate a list of length nsteps, and append the values, or to join the values using table? I can obviously change Table to Do to remove the time it takes to make the table list, going by b3m2a1's method, or I could use Join as you have suggested. I'm thinking your method may be faster, though. I've already removed the MapThread part, I am testing the speed increase granted by that at the moment. Just curious which path you think will be faster.
    $endgroup$
    – Shinaolord
    2 hours ago










  • $begingroup$
    I am currently testing the speed difference between the one in the post and rk4t2[f_, valtinit_, tinit_, tfinal_, nsteps_] := Module[test, table, xlist, ylist, step, k1, k2, k3, k4, xlist = tinit; step = N[(tfinal - tinit)/(nsteps)]; ylist = valtinit; table = xlist, ylist; test = Table[ k1 = step* f[ylist] ; k2 = step*f[k1/2 + ylist]; k3 = step*f[k2/2 + ylist]; k4 = step*f[k3 + ylist]; ylist += 1/6 (k1 + 2 (k2 + k3) + k4); xlist += step; xlist, ylist, nsteps]; Join[table, test] ];
    $endgroup$
    – Shinaolord
    2 hours ago












  • 1




    $begingroup$
    AppendTo is quadratic time complexity. Might be better to preallocate and set by index. Also it'll be much faster to not use Rule and instead code stuff up a little bit more explicitly. As a general rule, too, use vectorized operators. Those can be very fast. And if everything can be totally functional over "packed arrays" (look them up here) it'll be very quick too.
    $endgroup$
    – b3m2a1
    2 hours ago










  • $begingroup$
    I'll work on implementing it more explicity, this is what came to find first though. It'll require some changes to the inputs, I'll have to ponder this. And preallocating the list is a quick change that won't be an issue to do, I can't believe I forgot that's faster :(. Thanks though!
    $endgroup$
    – Shinaolord
    2 hours ago










  • $begingroup$
    Shinaoloard, using Join[ xlist, ylist, Table[ k1 = step*f /. MapThread[Rule, variables, ylist]; k2 = step*f /. MapThread[Rule, variables, k1/2 + ylist]; k3 = step*f /. MapThread[Rule, variables, k2/2 + ylist]; k4 = step*f /. MapThread[Rule, variables, k3 + ylist]; ylist += 1/6 (k1 + 2 (k2 + k3) + k4); xlist += step; xlist, ylist, nsteps ] ] as return value is already a first step. There is no point in appending if you use a Table anyways.
    $endgroup$
    – Henrik Schumacher
    2 hours ago










  • $begingroup$
    @HenrikSchumacher do you think it would be faster to Pre-allocate a list of length nsteps, and append the values, or to join the values using table? I can obviously change Table to Do to remove the time it takes to make the table list, going by b3m2a1's method, or I could use Join as you have suggested. I'm thinking your method may be faster, though. I've already removed the MapThread part, I am testing the speed increase granted by that at the moment. Just curious which path you think will be faster.
    $endgroup$
    – Shinaolord
    2 hours ago










  • $begingroup$
    I am currently testing the speed difference between the one in the post and rk4t2[f_, valtinit_, tinit_, tfinal_, nsteps_] := Module[test, table, xlist, ylist, step, k1, k2, k3, k4, xlist = tinit; step = N[(tfinal - tinit)/(nsteps)]; ylist = valtinit; table = xlist, ylist; test = Table[ k1 = step* f[ylist] ; k2 = step*f[k1/2 + ylist]; k3 = step*f[k2/2 + ylist]; k4 = step*f[k3 + ylist]; ylist += 1/6 (k1 + 2 (k2 + k3) + k4); xlist += step; xlist, ylist, nsteps]; Join[table, test] ];
    $endgroup$
    – Shinaolord
    2 hours ago







1




1




$begingroup$
AppendTo is quadratic time complexity. Might be better to preallocate and set by index. Also it'll be much faster to not use Rule and instead code stuff up a little bit more explicitly. As a general rule, too, use vectorized operators. Those can be very fast. And if everything can be totally functional over "packed arrays" (look them up here) it'll be very quick too.
$endgroup$
– b3m2a1
2 hours ago




$begingroup$
AppendTo is quadratic time complexity. Might be better to preallocate and set by index. Also it'll be much faster to not use Rule and instead code stuff up a little bit more explicitly. As a general rule, too, use vectorized operators. Those can be very fast. And if everything can be totally functional over "packed arrays" (look them up here) it'll be very quick too.
$endgroup$
– b3m2a1
2 hours ago












$begingroup$
I'll work on implementing it more explicity, this is what came to find first though. It'll require some changes to the inputs, I'll have to ponder this. And preallocating the list is a quick change that won't be an issue to do, I can't believe I forgot that's faster :(. Thanks though!
$endgroup$
– Shinaolord
2 hours ago




$begingroup$
I'll work on implementing it more explicity, this is what came to find first though. It'll require some changes to the inputs, I'll have to ponder this. And preallocating the list is a quick change that won't be an issue to do, I can't believe I forgot that's faster :(. Thanks though!
$endgroup$
– Shinaolord
2 hours ago












$begingroup$
Shinaoloard, using Join[ xlist, ylist, Table[ k1 = step*f /. MapThread[Rule, variables, ylist]; k2 = step*f /. MapThread[Rule, variables, k1/2 + ylist]; k3 = step*f /. MapThread[Rule, variables, k2/2 + ylist]; k4 = step*f /. MapThread[Rule, variables, k3 + ylist]; ylist += 1/6 (k1 + 2 (k2 + k3) + k4); xlist += step; xlist, ylist, nsteps ] ] as return value is already a first step. There is no point in appending if you use a Table anyways.
$endgroup$
– Henrik Schumacher
2 hours ago




$begingroup$
Shinaoloard, using Join[ xlist, ylist, Table[ k1 = step*f /. MapThread[Rule, variables, ylist]; k2 = step*f /. MapThread[Rule, variables, k1/2 + ylist]; k3 = step*f /. MapThread[Rule, variables, k2/2 + ylist]; k4 = step*f /. MapThread[Rule, variables, k3 + ylist]; ylist += 1/6 (k1 + 2 (k2 + k3) + k4); xlist += step; xlist, ylist, nsteps ] ] as return value is already a first step. There is no point in appending if you use a Table anyways.
$endgroup$
– Henrik Schumacher
2 hours ago












$begingroup$
@HenrikSchumacher do you think it would be faster to Pre-allocate a list of length nsteps, and append the values, or to join the values using table? I can obviously change Table to Do to remove the time it takes to make the table list, going by b3m2a1's method, or I could use Join as you have suggested. I'm thinking your method may be faster, though. I've already removed the MapThread part, I am testing the speed increase granted by that at the moment. Just curious which path you think will be faster.
$endgroup$
– Shinaolord
2 hours ago




$begingroup$
@HenrikSchumacher do you think it would be faster to Pre-allocate a list of length nsteps, and append the values, or to join the values using table? I can obviously change Table to Do to remove the time it takes to make the table list, going by b3m2a1's method, or I could use Join as you have suggested. I'm thinking your method may be faster, though. I've already removed the MapThread part, I am testing the speed increase granted by that at the moment. Just curious which path you think will be faster.
$endgroup$
– Shinaolord
2 hours ago












$begingroup$
I am currently testing the speed difference between the one in the post and rk4t2[f_, valtinit_, tinit_, tfinal_, nsteps_] := Module[test, table, xlist, ylist, step, k1, k2, k3, k4, xlist = tinit; step = N[(tfinal - tinit)/(nsteps)]; ylist = valtinit; table = xlist, ylist; test = Table[ k1 = step* f[ylist] ; k2 = step*f[k1/2 + ylist]; k3 = step*f[k2/2 + ylist]; k4 = step*f[k3 + ylist]; ylist += 1/6 (k1 + 2 (k2 + k3) + k4); xlist += step; xlist, ylist, nsteps]; Join[table, test] ];
$endgroup$
– Shinaolord
2 hours ago




$begingroup$
I am currently testing the speed difference between the one in the post and rk4t2[f_, valtinit_, tinit_, tfinal_, nsteps_] := Module[test, table, xlist, ylist, step, k1, k2, k3, k4, xlist = tinit; step = N[(tfinal - tinit)/(nsteps)]; ylist = valtinit; table = xlist, ylist; test = Table[ k1 = step* f[ylist] ; k2 = step*f[k1/2 + ylist]; k3 = step*f[k2/2 + ylist]; k4 = step*f[k3 + ylist]; ylist += 1/6 (k1 + 2 (k2 + k3) + k4); xlist += step; xlist, ylist, nsteps]; Join[table, test] ];
$endgroup$
– Shinaolord
2 hours ago










1 Answer
1






active

oldest

votes


















4












$begingroup$

Just to give you an impression how fast things may get when you use the right tools.



For given stepsize τ and given vectorfield F, this creates a CompiledFunction cStep that computes a single Runge-Kutta step



F = X [Function] -Indexed[X, 2], Indexed[X, 1];

τ = 0.01;
Block[YY, Y, k1, k2, k3, k4,

YY = Table[Compile`GetElement[Y, i], i, 1, 2];
k1 = τ F[YY];
k2 = τ F[0.5 k1 + YY];
k3 = τ F[0.5 k2 + YY];
k4 = τ F[k3 + YY];

cStep = With[code = YY + (k1 + 2. (k2 + k3) + k4)/6. ,
Compile[Y, _Real, 1,
code,
CompilationTarget -> "C",
RuntimeOptions -> "Speed"
]
]
];


Now we can apply it 2 million times with NestList and still need only 2 seconds.



nsteps = 20000000;
xlist = Range[0., step nsteps, step];
Ylist = NestList[cStep, initials, nsteps]; // AbsoluteTiming // First



2.08678







share|improve this answer









$endgroup$












  • $begingroup$
    Damn, you definitely know how to use Mathematica A LOT more efficiently than I do. Thanks!
    $endgroup$
    – Shinaolord
    2 hours ago










  • $begingroup$
    You're welcome.
    $endgroup$
    – Henrik Schumacher
    2 hours ago










  • $begingroup$
    I'll have to play around with Compile, it definitely seems like a massive speed up if used correctly.
    $endgroup$
    – Shinaolord
    2 hours ago










Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "387"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f194002%2fways-to-speed-up-user-implemented-rk4%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









4












$begingroup$

Just to give you an impression how fast things may get when you use the right tools.



For given stepsize τ and given vectorfield F, this creates a CompiledFunction cStep that computes a single Runge-Kutta step



F = X [Function] -Indexed[X, 2], Indexed[X, 1];

τ = 0.01;
Block[YY, Y, k1, k2, k3, k4,

YY = Table[Compile`GetElement[Y, i], i, 1, 2];
k1 = τ F[YY];
k2 = τ F[0.5 k1 + YY];
k3 = τ F[0.5 k2 + YY];
k4 = τ F[k3 + YY];

cStep = With[code = YY + (k1 + 2. (k2 + k3) + k4)/6. ,
Compile[Y, _Real, 1,
code,
CompilationTarget -> "C",
RuntimeOptions -> "Speed"
]
]
];


Now we can apply it 2 million times with NestList and still need only 2 seconds.



nsteps = 20000000;
xlist = Range[0., step nsteps, step];
Ylist = NestList[cStep, initials, nsteps]; // AbsoluteTiming // First



2.08678







share|improve this answer









$endgroup$












  • $begingroup$
    Damn, you definitely know how to use Mathematica A LOT more efficiently than I do. Thanks!
    $endgroup$
    – Shinaolord
    2 hours ago










  • $begingroup$
    You're welcome.
    $endgroup$
    – Henrik Schumacher
    2 hours ago










  • $begingroup$
    I'll have to play around with Compile, it definitely seems like a massive speed up if used correctly.
    $endgroup$
    – Shinaolord
    2 hours ago















4












$begingroup$

Just to give you an impression how fast things may get when you use the right tools.



For given stepsize τ and given vectorfield F, this creates a CompiledFunction cStep that computes a single Runge-Kutta step



F = X [Function] -Indexed[X, 2], Indexed[X, 1];

τ = 0.01;
Block[YY, Y, k1, k2, k3, k4,

YY = Table[Compile`GetElement[Y, i], i, 1, 2];
k1 = τ F[YY];
k2 = τ F[0.5 k1 + YY];
k3 = τ F[0.5 k2 + YY];
k4 = τ F[k3 + YY];

cStep = With[code = YY + (k1 + 2. (k2 + k3) + k4)/6. ,
Compile[Y, _Real, 1,
code,
CompilationTarget -> "C",
RuntimeOptions -> "Speed"
]
]
];


Now we can apply it 2 million times with NestList and still need only 2 seconds.



nsteps = 20000000;
xlist = Range[0., step nsteps, step];
Ylist = NestList[cStep, initials, nsteps]; // AbsoluteTiming // First



2.08678







share|improve this answer









$endgroup$












  • $begingroup$
    Damn, you definitely know how to use Mathematica A LOT more efficiently than I do. Thanks!
    $endgroup$
    – Shinaolord
    2 hours ago










  • $begingroup$
    You're welcome.
    $endgroup$
    – Henrik Schumacher
    2 hours ago










  • $begingroup$
    I'll have to play around with Compile, it definitely seems like a massive speed up if used correctly.
    $endgroup$
    – Shinaolord
    2 hours ago













4












4








4





$begingroup$

Just to give you an impression how fast things may get when you use the right tools.



For given stepsize τ and given vectorfield F, this creates a CompiledFunction cStep that computes a single Runge-Kutta step



F = X [Function] -Indexed[X, 2], Indexed[X, 1];

τ = 0.01;
Block[YY, Y, k1, k2, k3, k4,

YY = Table[Compile`GetElement[Y, i], i, 1, 2];
k1 = τ F[YY];
k2 = τ F[0.5 k1 + YY];
k3 = τ F[0.5 k2 + YY];
k4 = τ F[k3 + YY];

cStep = With[code = YY + (k1 + 2. (k2 + k3) + k4)/6. ,
Compile[Y, _Real, 1,
code,
CompilationTarget -> "C",
RuntimeOptions -> "Speed"
]
]
];


Now we can apply it 2 million times with NestList and still need only 2 seconds.



nsteps = 20000000;
xlist = Range[0., step nsteps, step];
Ylist = NestList[cStep, initials, nsteps]; // AbsoluteTiming // First



2.08678







share|improve this answer









$endgroup$



Just to give you an impression how fast things may get when you use the right tools.



For given stepsize τ and given vectorfield F, this creates a CompiledFunction cStep that computes a single Runge-Kutta step



F = X [Function] -Indexed[X, 2], Indexed[X, 1];

τ = 0.01;
Block[YY, Y, k1, k2, k3, k4,

YY = Table[Compile`GetElement[Y, i], i, 1, 2];
k1 = τ F[YY];
k2 = τ F[0.5 k1 + YY];
k3 = τ F[0.5 k2 + YY];
k4 = τ F[k3 + YY];

cStep = With[code = YY + (k1 + 2. (k2 + k3) + k4)/6. ,
Compile[Y, _Real, 1,
code,
CompilationTarget -> "C",
RuntimeOptions -> "Speed"
]
]
];


Now we can apply it 2 million times with NestList and still need only 2 seconds.



nsteps = 20000000;
xlist = Range[0., step nsteps, step];
Ylist = NestList[cStep, initials, nsteps]; // AbsoluteTiming // First



2.08678








share|improve this answer












share|improve this answer



share|improve this answer










answered 2 hours ago









Henrik SchumacherHenrik Schumacher

57.9k579159




57.9k579159











  • $begingroup$
    Damn, you definitely know how to use Mathematica A LOT more efficiently than I do. Thanks!
    $endgroup$
    – Shinaolord
    2 hours ago










  • $begingroup$
    You're welcome.
    $endgroup$
    – Henrik Schumacher
    2 hours ago










  • $begingroup$
    I'll have to play around with Compile, it definitely seems like a massive speed up if used correctly.
    $endgroup$
    – Shinaolord
    2 hours ago
















  • $begingroup$
    Damn, you definitely know how to use Mathematica A LOT more efficiently than I do. Thanks!
    $endgroup$
    – Shinaolord
    2 hours ago










  • $begingroup$
    You're welcome.
    $endgroup$
    – Henrik Schumacher
    2 hours ago










  • $begingroup$
    I'll have to play around with Compile, it definitely seems like a massive speed up if used correctly.
    $endgroup$
    – Shinaolord
    2 hours ago















$begingroup$
Damn, you definitely know how to use Mathematica A LOT more efficiently than I do. Thanks!
$endgroup$
– Shinaolord
2 hours ago




$begingroup$
Damn, you definitely know how to use Mathematica A LOT more efficiently than I do. Thanks!
$endgroup$
– Shinaolord
2 hours ago












$begingroup$
You're welcome.
$endgroup$
– Henrik Schumacher
2 hours ago




$begingroup$
You're welcome.
$endgroup$
– Henrik Schumacher
2 hours ago












$begingroup$
I'll have to play around with Compile, it definitely seems like a massive speed up if used correctly.
$endgroup$
– Shinaolord
2 hours ago




$begingroup$
I'll have to play around with Compile, it definitely seems like a massive speed up if used correctly.
$endgroup$
– Shinaolord
2 hours ago

















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematica Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f194002%2fways-to-speed-up-user-implemented-rk4%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

名間水力發電廠 目录 沿革 設施 鄰近設施 註釋 外部連結 导航菜单23°50′10″N 120°42′41″E / 23.83611°N 120.71139°E / 23.83611; 120.7113923°50′10″N 120°42′41″E / 23.83611°N 120.71139°E / 23.83611; 120.71139計畫概要原始内容臺灣第一座BOT 模式開發的水力發電廠-名間水力電廠名間水力發電廠 水利署首件BOT案原始内容《小檔案》名間電廠 首座BOT水力發電廠原始内容名間電廠BOT - 經濟部水利署中區水資源局

Prove that NP is closed under karp reduction?Space(n) not closed under Karp reductions - what about NTime(n)?Class P is closed under rotation?Prove or disprove that $NL$ is closed under polynomial many-one reductions$mathbfNC_2$ is closed under log-space reductionOn Karp reductionwhen can I know if a class (complexity) is closed under reduction (cook/karp)Check if class $PSPACE$ is closed under polyonomially space reductionIs NPSPACE also closed under polynomial-time reduction and under log-space reduction?Prove PSPACE is closed under complement?Prove PSPACE is closed under union?

Is my guitar’s action too high? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Strings too stiff on a recently purchased acoustic guitar | Cort AD880CEIs the action of my guitar really high?Μy little finger is too weak to play guitarWith guitar, how long should I give my fingers to strengthen / callous?When playing a fret the guitar sounds mutedPlaying (Barre) chords up the guitar neckI think my guitar strings are wound too tight and I can't play barre chordsF barre chord on an SG guitarHow to find to the right strings of a barre chord by feel?High action on higher fret on my steel acoustic guitar